
OGC® DOCUMENT: 18-053R2
External identifier of this OGC® document: http://www.opengis.net/docs/CS/3DTiles/1.0

3D TILES
SPECIFICATION 1.0

COMMUNITY STANDARD

APPROVED

Version: 1.0
Submission Date: 2018-06-04
Approval Date: 2018-12-14
Publication Date: 2019-01-31
Editor: Patrick Cozzi, Sean Lilley, Gabby Getz

Notice: This document is an OGC Member approved international standard. This document is available on a royalty free, non-discriminatory
basis. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware
and to provide supporting documentation.

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, (“Licensor”), free of charge and subject to the terms set forth below, to any
person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property without restriction
(except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense
copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that all copyright notices
on the intellectual property are retained intact and that each person to whom the Intellectual Property is furnished agrees to the terms of this
Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above copyright notice, a
notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE
ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE
ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY
RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION
WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all copies in
any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-user sublicense to the Intellectual Property
which is in force as of the date of notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a third party, you agree that
LICENSOR, in its sole discretion, may terminate this license without any compensation or liability to you, your licensees or any other party. You
agree upon termination of any kind to destroy or cause to be destroyed the Intellectual Property together with all copies in any form, whether held
by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual Property shall not
be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without prior written authorization
of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize you or any third party to use
certification marks, trademarks or other special designations to indicate compliance with any LICENSOR standards or specifications. This Agreement
is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United Nations Convention on Contracts
for the International Sale of Goods is hereby expressly excluded. In the event any provision of this Agreement shall be deemed unenforceable, void
or invalid, such provision shall be modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in violation of
U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

Copyright notice

Copyright © 2016-2019 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.ogc.org/legal/

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 ii

http://www.ogc.org/legal/

CONTENTS

I. PREFACE ...vi

II. SECURITY CONSIDERATIONS .. vii

III. SOURCE OF THE CONTENT FOR THIS OGC DOCUMENT vii

IV. VALIDITY OF CONTENT ...vii

V. FUTURE WORK ...vii

1. SCOPE .. 2

2. CONFORMANCE .. 4

3. NORMATIVE REFERENCES .. 154
3.1. Normative ..154

4. TERMS AND DEFINITIONS ... 6

5. CONVENTIONS ...10

6. 3D TILES SPECIFICATION ... 12
6.1. Overview ..12
6.2. File extensions and MIME types ... 14
6.3. JSON encoding ...14
6.4. URIs ... 14
6.5. Units .. 15
6.6. Coordinate reference system (CRS) ...15
6.7. Tiles ... 15
6.8. Tileset JSON ... 34
6.9. Specifying extensions and application specific extras .. 41
6.10. Tile format specifications .. 43

7. PROPERTY REFERENCE ...46
7.1. Tileset ..46
7.2. Asset ..48
7.3. Bounding Volume ...49
7.4. Extension ..51
7.5. Extras .. 52
7.6. Properties ...52

OPEN GEOSPATIAL CONSORTIUM 18-053R2 iii

7.7. Tile ... 53
7.8. Tile Content .. 57

8. FEATURE TABLE ...60
8.1. Overview ..60
8.2. Layout ... 60
8.3. Implementation example ..62
8.4. Property reference ...62

9. BATCH TABLE ... 66
9.1. Overview ..66
9.2. Layout ... 66
9.3. Implementation example ..69
9.4. Property reference ...70

10. TILE FORMAT SPECIFICATIONS ... 75
10.1. Batched 3D Model ..75
10.2. Instanced 3D Model ... 82
10.3. Point Cloud ... 96
10.4. Composite ...112

11. DECLARATIVE STYLING SPECIFICATION .. 116
11.1. Overview ...116
11.2. Concepts ..116
11.3. Expressions ... 119
11.4. Point Cloud ...139
11.5. File extension and MIME type .. 140
11.6. Property reference ..141

ANNEX A (NORMATIVE) CONFORMANCE CLASS ABSTRACT TEST SUITE 147

ANNEX B (INFORMATIVE) CONTRIBUTOR ACKNOWLEDGEMENTS149

ANNEX C (INFORMATIVE) REVISION HISTORY .. 151

LIST OF FIGURES

Figure 1 — A sample 3D Tiles bounding volume hierarchy ... 13
Figure 2 — A parent tile with replacement refinement .. 17
Figure 3 — A refined child tile of a tile with replacement refinement ...17
Figure 4 — A parent tile with additive refinement .. 18
Figure 5 — A refined child tile of a tile with additive refinement .. 19
Figure 6 — A bounding box ...20
Figure 7 — A bounding sphere ...21

OPEN GEOSPATIAL CONSORTIUM 18-053R2 iv

Figure 8 — A bounding region ..22
Figure 9 — A bounding region ..23
Figure 10 — A bounding box .. 24
Figure 11 — A bounding sphere ...25
Figure 12 — A tileset with transformed children tiles .. 29
Figure 13 — Tile JSON properties ...31
Figure 14 — A tile bounding volume in red, and a content bounding volume in blue34
Figure 15 — A tileset JSON file with external tileset JSON files ... 37
Figure 16 — A tileset with transforms referencing an external tileset with transforms 38
Figure 17 — A root tile and its four children tiles ..39
Figure 18 — Two sibling tiles with overlapping bounding volumes ... 40
Figure 19 — A tileset with an overlapping grid spatial data structure ...41
Figure 20 — Feature Table layout .. 60
Figure 21 — Feature Table binary body layout ...62
Figure 22 — Batch Table layout ... 66
Figure 23 — Batch Table binary body layout .. 68
Figure 24 — Batched 3D Model layout ..76
Figure 25 — Instanced 3D Model layout ... 83
Figure 26 — A box in the standard basis ... 86
Figure 27 — A box transformed into a rotated basis .. 87
Figure 28 — A quantized volume ...88
Figure 29 — Point Cloud layout ... 97
Figure 30 — A quantized volume .. 101
Figure 31 — Composite layout ...112

OPEN GEOSPATIAL CONSORTIUM 18-053R2 v

I PREFACE

Bringing techniques from graphics research, the movie industry, and the game industry to 3D
geospatial, 3D Tiles defines a spatial data structure and a set of tile formats designed for 3D, and
optimized for streaming and rendering.

NOTE: This draft policy does not address the issue of how the OGC migrates from WKT for CRS
version 2 –CRS2 — (ISO 19162 and OGC 12-063r5 Geographic information — Well-known text
representation of coordinate reference systems) to any subsequent future versions.

If approved, the contents of this document regarding coordinate reference systems will be
updated as needed to ensure compatibility.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 vi

I I SECURITY CONSIDERATIONS

No security considerations have been made for this document.

I I I SOURCE OF THE CONTENT FOR THIS OGC
DOCUMENT

The majority of the content in this OGC document is a direct copy of the content contained at
https://github.com/AnalyticalGraphicsInc/3d-tiles/releases/tag/1.0 (the 1.0 tag of the 3d-tiles
repo). No normative changes have been made to the content. This OGC document does contain
content not contained in the 1.0 tag of the 3d-tiles repo.

NOTE: Some elements (such as Vector Data) contained in https://github.com/
AnalyticalGraphicsInc/3d-tiles (the 3d-tiles repo) have been removed from the OGC document
because they are currently under development and not a part of this specification. These
elements are identified as future work in this OGC document.

IV VALIDITY OF CONTENT

The Submission Team has reviewed and certified that the “snapshot” content in this Community
Standard is true and accurate.

V FUTURE WORK

The 3D Tiles community anticipates that revisions to this Community Standard will be required
to prescribe content appropriate to meet new use cases. These use cases may arise from either
(or both) the external user and developer community or from OGC review and comments.
Further, future revisions will be driven by any submitted change requests that document
community uses cases and requirements.

Additions planned for future inclusion in the 3D Tiles Specification (future work) are described
at https://github.com/AnalyticalGraphicsInc/3d-tiles/issues/247.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 vii

https://github.com/AnalyticalGraphicsInc/3d-tiles/releases/tag/1.0
https://github.com/AnalyticalGraphicsInc/3d-tiles
https://github.com/AnalyticalGraphicsInc/3d-tiles
https://github.com/AnalyticalGraphicsInc/3d-tiles/issues/247

1

SCOPE

OPEN GEOSPATIAL CONSORTIUM 18-053R2 1

1 SCOPE

3D Tiles is designed for streaming and rendering massive 3D geospatial content such as
Photogrammetry, 3D Buildings, BIM/CAD, Instanced Features, and Point Clouds. It defines a
hierarchical data structure and a set of tile formats which deliver renderable content. 3D Tiles
does not define explicit rules for visualization of the content; a client may visualize 3D Tiles data
however it sees fit.

A 3D Tiles data set, called a tileset, contains any combination of tile formats organized into a
spatial data structure.

3D Tiles are declarative, extendable, and applicable to various types of 3D data. The following
tile formats have been specified as part of this document:

• Batched 3D Model

• Instanced 3D Model

• Point Cloud

• Composite

This document also describes 3D Tile Styles, a declarative styling specification which may be
applied to tilesets.

The 3D Tiles specification for tilesets, associated tile formats, and the associated styling
specification are open formats that are not dependent on any vendor-specific solution,
technology, or products.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 2

2

CONFORMANCE

OPEN GEOSPATIAL CONSORTIUM 18-053R2 3

2 CONFORMANCE

Sections 7 through 11 of this document describe the Objects and Properties required to
implement 3D Tiles. Conformance is relative to these elements and as partly expressed
via the associated 3D Tiles JSON schema documents located at https://github.com/
AnalyticalGraphicsInc/3d-tiles/releases/tag/1.0/specification/schema

All figures, examples, notes, and background information are non-normative.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 4

https://github.com/AnalyticalGraphicsInc/3d-tiles/releases/tag/1.0/specification/schema
https://github.com/AnalyticalGraphicsInc/3d-tiles/releases/tag/1.0/specification/schema

4

TERMS AND DEFINITIONS

OPEN GEOSPATIAL CONSORTIUM 18-053R2 5

4 TERMS AND DEFINITIONS

This document uses the terms defined in OGC Policy Directive 49, which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this document and OGC documents do not use the equivalent
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard,
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

4.1. Bounding Volume

A closed volume completely containing the union of a set of geometric objects.1

4.2. Feature

In 3D Tiles, an individual component of a tile, such as a 3D model in a Batched 3D Model or a
point in a Point Cloud which contains position, appearance, and metadata properties.

4.3. Geometric Error

The difference, in meters, of a tile’s simplified representation of its source geometry used to
calculate the screen space error introduced if a tile’s content is rendered and its children’s are
not.

1https://en.wikipedia.org/wiki/Bounding_volume

OPEN GEOSPATIAL CONSORTIUM 18-053R2 6

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762
https://en.wikipedia.org/wiki/Bounding_volume

4.4. glTF

An API-neutral runtime asset delivery format for 3D assets.

4.5. Hierarchical Level of Detail (HLOD)

Decreasing the complexity of a 3D representation according to metrics such as object
importance or distance from the tile to the observation point or camera position. Generally,
higher levels of detail provide greater visual fidelity.2

4.6. Tile

In 3D Tiles, a subset of a tileset containing a reference to renderable content and the metadata,
such as the content’s bounding volume, which is used by a client to determine if the content is
rendered.

4.7. Tile Content

A binary blob containing information necessary to render a tile which is an instance of a specific
tile format (Batched 3D Model, Instanced 3D Model, Point Clouds, or Composite).

4.8. Tile Format

The structure or layout of tile content data, (Batched 3D Model, Instanced 3D Model, Point
Clouds, or Composite).

2https://en.wikipedia.org/wiki/Level_of_detail

OPEN GEOSPATIAL CONSORTIUM 18-053R2 7

https://en.wikipedia.org/wiki/Level_of_detail

4.9. Tileset

In 3D Tiles, a collection of 3D Tiles tile instances organized into a spatial data structure and
additional metadata, such that the aggregation of these tiles represent some 3D content at
various levels of detail.

4.10. Screen-Space Error (SSE)

The difference, in pixels, of a tile’s simplified representation of its source geometry introduced if
a tile’s content is rendered and its children’s are not.

4.11. Spatial Coherence

The union of all content of the child tiles is completely inside the parent tile’s bounding volume

4.12. Style

A set of expressions to be evaluated which modify how each feature in a tileset is displayed

OPEN GEOSPATIAL CONSORTIUM 18-053R2 8

5

CONVENTIONS

OPEN GEOSPATIAL CONSORTIUM 18-053R2 9

5 CONVENTIONS

No conventions are specified in this document.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 10

6

3D TILES SPECIFICATION

OPEN GEOSPATIAL CONSORTIUM 18-053R2 11

6 3D TILES SPECIFICATION

6.1. Overview

3D Tiles is designed for streaming and rendering massive 3D geospatial content such as
Photogrammetry, 3D Buildings, BIM/CAD, Instanced Features, and Point Clouds. It defines a
hierarchical data structure and a set of tile formats which deliver renderable content. 3D Tiles
does not define explicit rules for visualization of the content; a client may visualize 3D Tiles data
however it sees fit.

In 3D Tiles, a tileset is a set of tiles organized in a spatial data structure, the tree. A tileset is
described by at least one tileset JSON file containing tileset metadata and a tree of tile objects,
each of which may reference renderable content of one of the following formats:

FORMAT USES

Batched 3D Model
(b3dm)

Heterogeneous 3D models. E.g. textured terrain and surfaces, 3D building exteriors and
interiors, massive models.

Instanced 3D Model
(i3dm)

3D model instances. E.g. trees, windmills, bolts.

Point Cloud (pnts) Massive number of points.

Composite (cmpt) Concatenate tiles of different formats into one tile.

A tile’s content, an individual instance of a tile format, is a binary blob with format-specific
components including a Feature Table and a Batch Table.

The content references a set of features, such as 3D models representing buildings or trees,
or points in a point cloud. Each feature has position and appearance properties stored in the
tile’s Feature Table, and additional application-specific properties stored in the Batch Table. A
client may choose to select features at runtime and retrieve their properties for visualization or
analysis.

The Batched 3D Model and Instanced 3D Model formats are built on glTF, an open specification
designed for the efficient transmission of 3D content. The tile content of these formats embed
a glTF asset, which contains model geometry and texture information, in the binary body. The
Point Cloud format does not embed glTF.

Tiles are organized in a tree which incorporates the concept of Hierarchical Level of Detail
(HLOD) for optimal rendering of spatial data. Each tile has a bounding volume, an object defining

OPEN GEOSPATIAL CONSORTIUM 18-053R2 12

https://github.com/KhronosGroup/glTF

a spatial extent completely enclosing its content. The tree has spatial coherence; the content for
child tiles are completely inside the parent’s bounding volume.

Figure 1 — A sample 3D Tiles bounding volume hierarchy

A tileset may use a 2D spatial tiling scheme similar to raster and vector tiling schemes (like a
Web Map Tile Service (WMTS) or XYZ scheme) that serve predefined tiles at several levels
of detail (or zoom levels). However since the content of a tileset is often non-uniform or may
not easily be organized in only two dimensions, the tree can be any spatial data structure with
spatial coherence, including k-d trees, quadtrees, octrees, and grids.

Optionally a 3D Tiles Style, or style, may be applied to a tileset. A style defines expressions to be
evaluated which modify how each feature is displayed.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 13

6.2. File extensions and MIME types

3D Tiles uses the following file extensions and MIME types.

• Tileset files use the .json extension and the application/json MIME type.

• Tile content files use the file type and MIME format specific to their tile format
specification, see Tile format specifications.

• Tileset style files use the .json extension and the application/json MIME type.

Explicit file extensions are optional. Valid implementations may ignore it and identify a content’s
format by the magic field in its header.

6.3. JSON encoding

3D Tiles has the following restrictions on JSON formatting and encoding.

1. JSON must use UTF-8 encoding without BOM.

2. All strings defined in this spec (properties names, enums) use only ASCII charset
and must be written as plain text.

3. Names (keys) within JSON objects must be unique, i.e., duplicate keys aren’t
allowed.

6.4. URIs

3D Tiles uses URIs to reference tile content. These URIs may point to relative external
references (RFC3986) or be data URIs that embed resources in the JSON. Embedded resources
use the “data” URI scheme (RFC2397).

When the URI is relative, its base is always relative to the referring tileset JSON file.

Client implementations are required to support relative external references and embedded
resources. Optionally, client implementations may support other schemes (such as http://). All
URIs must be valid and resolvable.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 14

https://tools.ietf.org/html/rfc3986#section-4.2
https://tools.ietf.org/html/rfc3986#section-4.2
https://tools.ietf.org/html/rfc2397

6.5. Units

The unit for all linear distances is meters.

All angles are in radians.

6.6. Coordinate reference system (CRS)

3D Tiles uses a right-handed Cartesian coordinate system; that is, the cross product of x and y yields z. 3D Tiles defines the z axis as up for local Cartesian coordinate systems. A tileset’s
global coordinate system will often be in a WGS 84 earth-centered, earth-fixed (ECEF) reference
frame (EPSG 4979), but it doesn’t have to be, e.g., a power plant may be defined fully in its local
coordinate system for use with a modeling tool without a geospatial context.

An additional tile transform may be applied to transform a tile’s local coordinate system to the
parent tile’s coordinate system.

The Region bounding volume specifies bounds using a geographic coordinate system (latitude,
longitude, height), specifically EPSG 4979.

6.7. Tiles

Tiles consist of metadata used to determine if a tile is rendered, a reference to the renderable
content, and an array of any children tiles.

6.7.1. Geometric error

Tiles are structured into a tree incorporating Hierarchical Level of Detail (HLOD) so that at
runtime a client implementation will need to determine if a tile is sufficiently detailed for
rendering and if the content of tiles should be successively refined by children tiles of higher
resolution. An implementation will consider a maximum allowed Screen-Space Error (SSE), the
error measured in pixels.

A tile’s geometric error defines the selection metric for that tile. Its value is a nonnegative
number that specifies the error, in meters, of the tile’s simplified representation of its source
geometry. The root tile, being the most simplified version of the source geometry, will have the
greatest geometric error. Then each successive level of children will have a lower geometric
error than its parent, with leaf tiles having a geometric error of or close to 0.

In a client implementation, geometric error is used with other screen space metrics—e.g.,
distance from the tile to the camera, screen size, and resolution— to calculate the SSE

OPEN GEOSPATIAL CONSORTIUM 18-053R2 15

http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf
http://spatialreference.org/ref/epsg/4979/
http://spatialreference.org/ref/epsg/4979/

introduced if this tile is rendered and its children are not. If the introduced SSE exceeds the
maximum allowed, then the tile is refined and its children are considered for rendering.

The geometric error is formulated based on a metric like point density, tile size in meters, or
another factor specific to that tileset. In general, a higher geometric error means a tile will be
refined more aggressively, and children tiles will be loaded and rendered sooner.

6.7.2. Refinement

 Refinement determines the process by which a lower resolution parent tile renders when
its higher resolution children are selected to be rendered. Permitted refinement types are
replacement (”REPLACE”) and additive (”ADD”). If the tile has replacement refinement, the
children tiles are rendered in place of the parent, that is, the parent tile is no longer rendered. If
the tile has additive refinement, the children are rendered in addition to the parent tile.

A tileset can use replacement refinement exclusively, additive refinement exclusively, or any
combination of additive and replacement refinement.

A refinement type is required for the root tile of a tileset; it is optional for all other tiles. When
omitted, a tile inherits the refinement type of its parent.

6.7.2.1. Replacement

If a tile uses replacement refinement, when refined it renders its children in place of itself.

Parent Tile

OPEN GEOSPATIAL CONSORTIUM 18-053R2 16

Figure 2 — A parent tile with replacement refinement

Refined

Figure 3 — A refined child tile of a tile with replacement refinement

OPEN GEOSPATIAL CONSORTIUM 18-053R2 17

6.7.2.2. Additive

If a tile uses additive refinement, when refined it renders itself and its children simultaneously.

Parent Tile

Figure 4 — A parent tile with additive refinement

Refined

OPEN GEOSPATIAL CONSORTIUM 18-053R2 18

Figure 5 — A refined child tile of a tile with additive refinement

6.7.3. Bounding volumes

A bounding volume defines the spatial extent enclosing a tile or a tile’s content. To support tight
fitting volumes for a variety of datasets such as regularly divided terrain, cities not aligned with
a line of latitude or longitude, or arbitrary point clouds, the bounding volume types include an
oriented bounding box, a bounding sphere, and a geographic region defined by minimum and
maximum latitudes, longitudes, and heights.

Bounding box

OPEN GEOSPATIAL CONSORTIUM 18-053R2 19

Figure 6 — A bounding box

Bounding sphere

OPEN GEOSPATIAL CONSORTIUM 18-053R2 20

Figure 7 — A bounding sphere

Bounding region

OPEN GEOSPATIAL CONSORTIUM 18-053R2 21

Figure 8 — A bounding region

6.7.3.1. Region

The boundingVolume.region property is an array of six numbers that define the bounding
geographic region with latitude, longitude, and height coordinates with the order [west,
south, east, north, minimum height, maximum height]. Latitudes and longitudes are in
the WGS 84 datum as defined in EPSG 4979 and are in radians. Heights are in meters above (or
below) the WGS 84 ellipsoid.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 22

http://spatialreference.org/ref/epsg/4979/
http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf

Figure 9 — A bounding region

"boundingVolume": {
 "region": [
 -1.3197004795898053,
 0.6988582109,
 -1.3196595204101946,
 0.6988897891,
 0,
 20
]
}

6.7.3.2. Box

The boundingVolume.box property is an array of 12 numbers that define an oriented bounding
box in a right-handed 3-axis (x , y , z) Cartesian coordinate system where the z-axis is up. The
first three elements define the x , y , and z values for the center of the box. The next three
elements (with indices 3, 4, and 5) define the x-axis direction and half-length. The next three
elements (indices 6, 7, and 8) define the y -axis direction and half-length. The last three elements
(indices 9, 10, and 11) define the z-axis direction and half-length.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 23

Figure 10 — A bounding box

"boundingVolume": {
 "box": [
 0,0,10,
 100,0,0,
 0,100,0,
 0,0,10
]
}

6.7.3.3. Sphere

The boundingVolume.sphere property is an array of four numbers that define a bounding
sphere. The first three elements define the x , y , and z values for the center of the sphere in
a right-handed 3-axis (x , y , z) Cartesian coordinate system where the z-axis is up. The last
element (with index 3) defines the radius in meters.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 24

Figure 11 — A bounding sphere

"boundingVolume": {
 "sphere": [
 0,
 0,
 10,
 141.4214
]
}

6.7.4. Viewer request volume

A tile’s viewerRequestVolume can be used for combining heterogeneous datasets, and can be
combined with External tilesets.

The following example has a building in a b3dm tile and a point cloud inside the building in a pnts
tile. The point cloud tile’s boundingVolume is a sphere with a radius of 1.25. It also has a larger
sphere with a radius of 15 for the viewerRequestVolume. Since the geometricError is zero, the
point cloud tile’s content is always rendered (and initially requested) when the viewer is inside
the large sphere defined by viewerRequestVolume.

{
 "children":[{
 "transform":[
 4.843178171884396,1.2424271388626869,0,0,
 -0.7993325488216595,3.1159251367235608,3.8278032889280675,0,
 0.9511533376784163,-3.7077466670407433,3.2168186118075526,0,
 1215001.7612985559,-4736269.697480114,4081650.708604793,1

OPEN GEOSPATIAL CONSORTIUM 18-053R2 25

],
 "boundingVolume":{
 "box":[
 0,0,6.701,
 3.738,0,0,
 0,3.72,0,
 0,0,13.402
]
 },
 "geometricError":32,
 "content":{
 "uri":"building.b3dm"
 }
 },{
 "transform":[
 0.968635634376879,0.24848542777253732,0,0,
 -0.15986650990768783,0.6231850279035362,0.7655606573007809,0,
 0.19023066741520941,-0.7415493329385225,0.6433637229384295,0,
 1215002.0371330238,-4736270.772726648,4081651.6414821907,1
],
 "viewerRequestVolume":{
 "sphere":[0,0,0,15]
 },
 "boundingVolume":{
 "sphere":[0,0,0,1.25]
 },
 "geometricError":0,
 "content":{
 "uri":"points.pnts"
 }
 }]
}

For more on request volumes, see the sample tileset and demo video.

6.7.5. Transforms

6.7.5.1. Tile transforms

To support local coordinate systems—e.g., so a building tileset inside a city tileset can be defined
in its own coordinate system, and a point cloud tileset inside the building could, again, be
defined in its own coordinate system—each tile has an optional transform property.

The transform property is a 4×4 affine transformation matrix, stored in column-major order,
that transforms from the tile’s local coordinate system to the parent tile’s coordinate system—or
the tileset’s coordinate system in the case of the root tile.

The transform property applies to:

• tile.content

• Each feature’s position.

• Each feature’s normal should be transformed by the top-left 3×3 matrix of the inverse-
transpose of transform to account for correct vector transforms when scale is used.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 26

https://github.com/AnalyticalGraphicsInc/3d-tiles-samples/tree/master/tilesets/TilesetWithRequestVolume
https://www.youtube.com/watch?v=PgX756Yzjf4
http://www.realtimerendering.com/resources/RTNews/html/rtnews1a.html#art4

• content.boundingVolume, except when content.boundingVolume.region is defined,
which is explicitly in EPSG:4979 coordinates.

• tile.boundingVolume, except when tile.boundingVolume.region is defined, which is
explicitly in EPSG:4979 coordinates.

• tile.viewerRequestVolume, except when tile.viewerRequestVolume.region is
defined, which is explicitly in EPSG:4979 coordinates.

The transform property does not apply to geometricError —i.e., the scale defined by
transform does not scale the geometric error—the geometric error is always defined in meters.

When transform is not defined, it defaults to the identity matrix:

[
1.0,0.0,0.0,0.0,
0.0,1.0,0.0,0.0,
0.0,0.0,1.0,0.0,
0.0,0.0,0.0,1.0
]

The transformation from each tile’s local coordinate system to the tileset’s global coordinate
system is computed by a top-down traversal of the tileset and by post-multiplying a child’s
transform with its parent’s transform like a traditional scene graph or node hierarchy in
computer graphics.

6.7.5.2. glTF transforms

Batched 3D Model and Instanced 3D Model tiles embed glTF, which defines its own node
hierarchy and uses a y -up coordinate system. Any transforms specific to a tile format and the
tile.transform property are applied after these transforms are resolved.

6.7.5.2.1. glTF node hierarchy

First, glTF node hierarchy transforms are applied according to the glTF specification.

6.7.5.2.2. y-up to z-up

Next, for consistency with the z-up coordinate system of 3D Tiles, glTFs must be transformed
from y -up to z-up at runtime. This is done by rotating the model about the x-axis by pi // 2
radians. Equivalently, apply the following matrix transform (shown here as row-major):

[
1.0,0.0,0.0,0.0,
0.0,0.0,-1.0,0.0,
0.0,1.0,0.0,0.0,
0.0,0.0,0.0,1.0
]

More broadly the order of transformations is:

OPEN GEOSPATIAL CONSORTIUM 18-053R2 27

https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#transformations

1. glTF node hierarchy transformations

2. glTF y-up to z-up transform

3. Any tile format specific transforms.

• Batched 3D Model Feature Table may define RTC_CENTER which is used to
translate model vertices.

• Instanced 3D Model Feature Table defines per-instance position, normals,
and scales. These are used to create per-instance 4×4 affine transform
matrices that are applied to each instance.

4. Tile transform

Implementation note: when working with source data that is inherently z-up, such as data in
WGS 84 coordinates or in a local z-up coordinate system, a common workflow is:

• Mesh data, including positions and normals, are not modified — they remain z-up.

• The root node matrix specifies a column-major z-up to y -up transform. This transforms
the source data into a y -up coordinate system as required by glTF.

• At runtime the glTF is transformed back from y -up to z-up with the matrix above.
Effectively the transforms cancel out.

Example glTF root node:

“nodes”: [
 {
 “matrix”:[1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,1],
 “mesh”:0,
 “name”:”rootNode”
 }
]

6.7.5.2.3. Example

For an example of the computed transforms (transformToRoot in the code above) for a tileset,
consider:

OPEN GEOSPATIAL CONSORTIUM 18-053R2 28

Figure 12 — A tileset with transformed children tiles

The computed transform for each tile is:

• TO: [T0]

• T1: [T0][T1]

• T2: [T0][T2]

• T3: [T0][T1][T3]

• T4: [T0][T1][T4]

The positions and normals in a tile’s content may also have tile-specific transformations applied
to them before the tile’s transform (before indicates post-multiplying for affine transformations).
Some examples are:

• b3dm and i3dm tiles embed glTF, which defines its own node hierarchy and coordinate
system. tile.transform is applied after these transforms are resolved. See glTF
transforms.

• i3dm ‘s Feature Table defines per-instance position, normals, and scales. These are used to
create per-instance 4×4 affine transform matrices that are applied to each instance before
tile.transform.

• Compressed attributes, such as POSITION_QUANTIZED in the Feature Tables for i3dm and
pnts, and NORMAL_OCT16P in pnts should be decompressed before any other transforms.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 29

Therefore, the full computed transforms for the above example are:

• TO: [T0]

• T1: [T0][T1]

• T2: [T0][T2][pnts-specific transform, including RTC_CENTER (if defined)]

• T3: [T0][T1][T3][b3dm-specific transform, including RTC_CENTER (if
defined), coordinate system transform, and glTF node hierarchy]

• T4: [T0][T1][T4][i3dm-specific transform, including per-instance
transform, coordinate system transform, and glTF node hierarchy]

6.7.5.2.4. Implementation example

This section is non-normative

The following JavaScript code shows how to compute this using Cesium’s Matrix4 and Matrix3
types.

function computeTransforms(tileset) {
 var t = tileset.root;
 var transformToRoot = defined(t.transform) ?Matrix4.fromArray(t.transform) :
 Matrix4.IDENTITY;

 computeTransform(t, transformToRoot);
}

function computeTransform(tile, transformToRoot) {
 // Apply 4x4 transformToRoot to this tile's positions and bounding volumes

 var inverseTransform = Matrix4.inverse(transformToRoot,*new*Matrix4());
 var normalTransform = Matrix4.getRotation(inverseTransform,*new*Matrix3());
 normalTransform =Matrix3.transpose(normalTransform, normalTransform);
 // Apply 3x3 normalTransform to this tile's normals_

 var children = tile.children;
 var length = children.length;
 for (var i = 0; i < length; ++i) {
 var child = children[i];
 var childToRoot = defined(child.transform) ?Matrix4.fromArray(child.
transform) : Matrix4.clone(Matrix4.IDENTITY);
 childToRoot =Matrix4.multiplyTransformation(transformToRoot,
childToRoot, childToRoot);
 computeTransform(child, childToRoot);
 }
}

6.7.6. Tile JSON

A tile JSON object consists of the following properties.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 30

https://github.com/AnalyticalGraphicsInc/cesium/blob/master/Source/Core/Matrix4.js
https://github.com/AnalyticalGraphicsInc/cesium/blob/master/Source/Core/Matrix3.js

Figure 13 — Tile JSON properties

The following example shows one non-leaf tile.

{
 "boundingVolume":{
 "region":[

OPEN GEOSPATIAL CONSORTIUM 18-053R2 31

 -1.2419052957251926,
 0.7395016240301894,
 -1.2415404171917719,
 0.7396563300150859,
 0,
 20.4
]
 },
 "geometricError":43.88464075650763,
 "refine":"ADD",
 "content":{
 "boundingVolume":{
 "region":[
 -1.2418882438584018,
 0.7395016240301894,
 -1.2415422846940714,
 0.7396461198389616,
 0,
 19.4
]
 },
 "uri":"2/0/0.b3dm"
 },
 "children":[*...*]
}

The boundingVolume defines a volume enclosing the tile, and is used to determine which tiles to
render at runtime. The above example uses a region volume, but other bounding volumes, such
as box or sphere, may be used.

The geometricError property is a nonnegative number that defines the error, in meters,
introduced if this tile is rendered and its children are not. At runtime, the geometric error is used
to compute Screen-Space Error (SSE), the error measured in pixels. The SSE determines if a tile is
sufficiently detailed for the current view or if its children should be considered, see Tiles consist
of metadata used to determine if a tile is rendered, a reference to the renderable content, and an
array of any children tiles.

Geometric error.

The optional viewerRequestVolume property (not shown above) defines a volume, using the
same schema as boundingVolume, which the viewer must be inside of before the tile’s content
will be requested and before the tile will be refined based on geometricError. See the Viewer
request volume section.

The refine property is a string that is either “REPLACE” for replacement refinement or “ADD”
for additive refinement, see Tiles are structured into a tree incorporating Hierarchical Level
of Detail (HLOD) so that at runtime a client implementation will need to determine if a tile is
sufficiently detailed for rendering and if the content of tiles should be successively refined by
children tiles of higher resolution. An implementation will consider a maximum allowed Screen-
Space Error (SSE), the error measured in pixels.

A tile’s geometric error defines the selection metric for that tile. Its value is a nonnegative
number that specifies the error, in meters, of the tile’s simplified representation of its source
geometry. The root tile, being the most simplified version of the source geometry, will have the
greatest geometric error. Then each successive level of children will have a lower geometric
error than its parent, with leaf tiles having a geometric error of or close to 0.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 32

In a client implementation, geometric error is used with other screen space metrics—e.g.,
distance from the tile to the camera, screen size, and resolution— to calculate the SSE
introduced if this tile is rendered and its children are not. If the introduced SSE exceeds the
maximum allowed, then the tile is refined and its children are considered for rendering.

The geometric error is formulated based on a metric like point density, tile size in meters, or
another factor specific to that tileset. In general, a higher geometric error means a tile will be
refined more aggressively, and children tiles will be loaded and rendered sooner.

Refinement. It is required for the root tile of a tileset; it is optional for all other tiles. A tileset
can use any combination of additive and replacement refinement. When the refine property is
omitted, it is inherited from the parent tile.

The content property is an object that contains metadata about the tile’s renderable content.
content.uri is a uri that points to the tile’s binary content (see Tile format specifications), or
another tileset JSON to create a tileset of tileset (see External tilesets).

A file extension is not required for content.uri. A content’s tile format (see Tile format
specifications) can be identified by the magic field in its header, or else as an external tileset if
the content is JSON.

The content.boundingVolume property defines an optional bounding volume similar to
the top-level boundingVolume property. But unlike the top-level boundingVolume property,
content.boundingVolume is a tightly fit bounding volume enclosing just the tile’s content.
boundingVolume provides spatial coherence and content.boundingVolume enables tight view
frustum culling, excluding from rendering any content not in the volume of what is potentially in
view. When it is not defined, the tile’s bounding volume is still used for culling (see Grids).

The screenshot below shows the bounding volumes for the root tile for Canary Wharf.
boundingVolume, shown in red, encloses the entire area of the tileset; content.
boundingVolume shown in blue, encloses just the four features (models) in the root tile.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 33

http://cesiumjs.org/CanaryWharf/

Figure 14 — A tile bounding volume in red, and a content bounding volume in blue

The optional transform property (not shown above) defines a 4×4 affine transformation matrix
that transforms the tile’s content, boundingVolume, and viewerRequestVolume as described in
the T section.

The children property is an array of objects that define child tiles. Each child tile’s content is
fully enclosed by its parent tile’s boundingVolume and, generally, a geometricError less than its
parent tile’s geometricError. For leaf tiles, the length of this array is zero, and children may
not be defined.

6.8. Tileset JSON

3D Tiles uses one main tileset JSON file as the entry point to define a tileset. Both entry and
external tileset JSON files are not required to follow a specific naming convention.

Here is a subset of the tileset JSON used for Canary Wharf (also see the complete file,
tileset.json):

{
 "asset":{
 "version":"1.0",
 "tilesetVersion":"e575c6f1-a45b-420a-b172-6449fa6e0a59",
 },
 "properties":{
 "Height":{

OPEN GEOSPATIAL CONSORTIUM 18-053R2 34

http://cesiumjs.org/CanaryWharf/
../../../../../ggetz/Documents/examples/tileset.json

 "minimum":1,
 "maximum":241.6
 }
 },
 "geometricError":494.50961650991815,
 "root":{
 "boundingVolume":{
 "region":[
 -0.0005682966577418737,
 0.8987233516605286,
 0.00011646582098558159,
 0.8990603398325034,
 0,
 241.6
]
 },
 "geometricError":268.37878244706053,
 "refine":"ADD",
 "content":{
 "uri":"0/0/0.b3dm",
 "boundingVolume":{
 "region":[
 -0.0004001690908972599,
 0.8988700116775743,
 0.00010096729722787196,
 0.8989625664878067,
 0,
 241.6
]
 }
 },
 "children":[*..*]
 }
}

The tileset JSON has four top-level properties: asset, properties, geometricError, and root.

asset is an object containing metadata about the entire tileset. The asset.version property is
a string that defines the 3D Tiles version, which specifies the JSON schema for the tileset and
the base set of tile formats. The tilesetVersion property is an optional string that defines an
application-specific version of a tileset, e.g., for when an existing tileset is updated.

properties is an object containing objects for each per-feature property in the tileset. This
tileset JSON snippet is for 3D buildings, so each tile has building models, and each building
model has a Height property (see Batch Table). The name of each object in properties matches
the name of a per-feature property, and its value defines its minimum and maximum numeric
values, which are useful, for example, for creating color ramps for styling.

geometricError is a nonnegative number that defines the error, in meters, when the tileset is
not rendered. See Tiles consist of metadata used to determine if a tile is rendered, a reference to
the renderable content, and an array of any children tiles.

Geometric error for how this value is used to drive refinement.

root is an object that defines the root tile using the JSON described in the above section.
root.geometricError is not the same as the tileset’s top-level geometricError. The tileset’s
geometricError is the error when the entire tileset is not rendered; root.geometricError is
the error when only the root tile is rendered.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 35

../../../../../ggetz/Documents/_Batch_Table

root.children is an array of objects that define child tiles. Each child tile’s content is fully
enclosed by its parent tile’s boundingVolume and, generally, a geometricError less than its
parent tile’s geometricError. For leaf tiles, the length of this array is zero, and children may
not be defined.

6.8.1. External tilesets

To create a tree of trees, a tile’s content.uri can point to an external tileset (the uri of another
tileset JSON file). This enables, for example, storing each city in a tileset and then having a global
tileset of tilesets.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 36

Figure 15 — A tileset JSON file with external tileset JSON files

When a tile points to an external tileset, the tile:

• Cannot have any children; tile.children must be undefined or an empty array.

• Cannot be used to create cycles, for example, by pointing to the same tileset file
containing the tile or by pointing to another tileset file that then points back to the initial
file containing the tile.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 37

• Will be transformed by both the tile’s transform and root tile’s transform. For example, in
the following tileset referencing an external tileset, the computed transform for T3 is [T0]
[T1][T2][T3].

Figure 16 — A tileset with transforms referencing an external tileset with transforms

6.8.2. Bounding volume spatial coherence

As described above, the tree has spatial coherence; each tile has a bounding volume completely
enclosing its content, and the content for child tiles are completely inside the parent’s bounding
volume. This does not imply that a child’s bounding volume is completely inside its parent’s
bounding volume. For example:

6.8.3. Spatial data structures

3D Tiles incorporates the concept of Hierarchical Level of Detail (HLOD) for optimal rendering
of spatial data. A tileset is composed of a tree, defined by root and, recursively, its children
tiles, which can be organized by different types of spatial data structures.

A runtime engine is generic and will render any tree defined by a tileset. Any combination
of tile formats and refinement approaches can be used, enabling flexibility in supporting
heterogeneous datasets, see Refinement.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 38

A tileset may use a 2D spatial tiling scheme similar to raster and vector tiling schemes (like a
Web Map Tile Service (WMTS) or XYZ scheme) that serve predefined tiles at several levels of
detail (or zoom levels). However since the content of a tileset is often non-uniform or may not
easily be organized in only two dimensions, other spatial data structures may be more optimal.

Included below is a brief description of how 3D Tiles can represent various spatial data
structures.

6.8.3.1. Quadtrees

A quadtree is created when each tile has four uniformly subdivided children (e.g., using the
center latitude and longitude), similar to typical 2D geospatial tiling schemes. Empty child tiles
can be omitted.

3D Tiles enable quadtree variations such as non-uniform subdivision and tight bounding
volumes (as opposed to bounding, for example, the full 25% of the parent tile, which is wasteful
for sparse datasets).

For example, here is the root tile and its children for Canary Wharf. Note the bottom left, where
the bounding volume does not include the water on the left where no buildings will appear:

Figure 17 — A root tile and its four children tiles

3D Tiles also enable other quadtree variations such as loose quadtrees, where child tiles overlap
but spatial coherence is still preserved, i.e., a parent tile completely encloses all of its children.
This approach can be useful to avoid splitting features, such as 3D models, across tiles.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 39

http://www.tulrich.com/geekstuff/partitioning.html

Below, the green buildings are in the left child and the purple buildings are in the right child.
Note that the tiles overlap so the two green and one purple building in the center are not split.

Figure 18 — Two sibling tiles with overlapping bounding volumes

6.8.3.2. K-d trees

A k-d tree is created when each tile has two children separated by a splitting plane parallel to the x , y , or z axis (or latitude, longitude, height). The split axis is often round-robin rotated as levels
increase down the tree, and the splitting plane may be selected using the median split, surface
area heuristics, or other approaches.

Note that a k-d tree does not have uniform subdivision like typical 2D geospatial tiling schemes
and, therefore, can create a more balanced tree for sparse and non-uniformly distributed
datasets.

3D Tiles enables variations on k-d trees such as multi-way k-d trees where, at each leaf of the
tree, there are multiple splits along an axis. Instead of having two children per tile, there are n
children.

6.8.3.3. Octrees

An octree extends a quadtree by using three orthogonal splitting planes to subdivide a tile
into eight children. Like quadtrees, 3D Tiles allows variations to octrees such as non-uniform
subdivision, tight bounding volumes, and overlapping children.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 40

http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id=%27Goswami:2013:EMF%27

6.8.3.4. Grids

3D Tiles enables uniform, non-uniform, and overlapping grids by supporting an arbitrary
number of child tiles. For example, here is a top-down view of a non-uniform overlapping grid of
Cambridge:

Figure 19 — A tileset with an overlapping grid spatial data structure

3D Tiles takes advantage of empty tiles: those tiles that have a bounding volume, but no
content. Since a tile’s content property does not need to be defined, empty non-leaf tiles can be
used to accelerate non-uniform grids with hierarchical culling. This essentially creates a quadtree
or octree without hierarchical levels of detail (HLOD).

6.9. Specifying extensions and application specific extras

3D Tiles defines extensions to allow the base specification to have extensibility for new
features, as well as extras to allow for application specific metadata.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 41

6.9.1. Extensions

Extensions allow the base specification to be extended with new features. The optional
extensions dictionary property may be added to any 3D Tiles JSON object, which contains the
name of the extensions and the extension specific objects. The following example shows a tile
object with a hypothetical vendor extension which specifies a separate collision volume.

{
 “transform”:[
 4.843178171884396,1.2424271388626869,0,0,
 -0.7993325488216595,3.1159251367235608,3.8278032889280675,0,
 0.9511533376784163,-3.7077466670407433,3.2168186118075526,0,
 1215001.7612985559,-4736269.697480114,4081650.708604793,1
],
 “boundingVolume”:{
 “box”:[
 0,0,6.701,
 3.738,0,0,
 0,3.72,0,
 0,0,13.402
]
 },
 “geometricError”:32,
 “content”:{
 “uri”:”building.b3dm”
 },
 “extensions”:{
 “VENDOR_collision_volume”:{
 “box”:[
 0,0,6.8,
 3.8,0,0,
 0,3.8,0,
 0,0,13.5
]
 }
 }
}

All extensions used in a tileset or any descendant external tilesets must be listed in the entry
tileset JSON in the top-level extensionsUsed array property, e.g.,

{
 “extensionsUsed”:[
 “VENDOR_collision_volume”
]
}

All extensions required to load and render a tileset or any descendant external tilesets must also
be listed in the entry tileset JSON in the top-level extensionsRequired array property, such
that extensionsRequired is a subset of extensionsUsed. All values in extensionsRequired
must also exist in extensionsUsed.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 42

6.9.2. Extras

The extras property allows application specific metadata to be added to any 3D Tiles JSON
object. The following example shows a tile object with an additional application specific name
property.

{
 "transform":[
 4.843178171884396,1.2424271388626869,0,0,
 -0.7993325488216595,3.1159251367235608,3.8278032889280675,0,
 0.9511533376784163,-3.7077466670407433,3.2168186118075526,0,
 1215001.7612985559,-4736269.697480114,4081650.708604793,1
],
 "boundingVolume":{
 "box":[
 0,0,6.701,
 3.738,0,0,
 0,3.72,0,
 0,0,13.402
]
 },
 "geometricError":32,
 "content":{
 "uri":"building.b3dm"
 },
 "extras":{
 "name":"Empire State Building"
 }
}

6.10. Tile format specifications

Each tile’s content.uri property may be the uri of binary blob that contains information for
rendering the tile’s 3D content. The content is an instance of one of the formats listed in the
table below.

FORMAT USES

Batched 3D
Model

Heterogeneous 3D models. E.g. textured terrain and surfaces, 3D building exteriors and
interiors, massive models.

Instanced 3D
Model

3D model instances. E.g. trees, windmills, bolts.

Point Cloud Massive number of points.

Composite Concatenate tiles of different formats into one tile.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 43

A tileset can contain any combination of tile formats. 3D Tiles may also support different
formats in the same tile using a Composite tile.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 44

7

PROPERTY REFERENCE

OPEN GEOSPATIAL CONSORTIUM 18-053R2 45

7 PROPERTY REFERENCE

7.1. Tileset

A 3D Tiles tileset.

Properties

TYPE DESCRIPTION REQUIRED

asset object Metadata about the entire tileset. Yes

properties any A dictionary object of metadata about per-feature properties. No

geometricError number
The error, in meters, introduced if this tileset is not rendered. At
runtime, the geometric error is used to compute screen space error
(SSE), i.e., the error measured in pixels.

Yes

root object A tile in a 3D Tiles tileset. Yes

extensionsUsed
string[1-
*]

Names of 3D Tiles extensions used somewhere in this tileset. No

extensions
Required

string[1-
*]

Names of 3D Tiles extensions required to properly load this tileset. No

extensions object Dictionary object with extension-specific objects. No

extras any Application-specific data. No

Additional properties are not allowed.

7.1.1. Tileset.asset

Metadata about the entire tileset.

• Type: object

• Required: Yes

OPEN GEOSPATIAL CONSORTIUM 18-053R2 46

7.1.2. Tileset.properties

A dictionary object of metadata about per-feature properties.

• Type: any

• Required: No

• Type of each property: object

7.1.3. Tileset.geometricError

The error, in meters, introduced if this tileset is not rendered. At runtime, the geometric error is
used to compute screen space error (SSE), i.e., the error measured in pixels.

• Type: number

• Required: Yes

• Minimum: >= 0

7.1.4. Tileset.root

A tile in a 3D Tiles tileset.

• Type: object

• Required: Yes

7.1.5. Tileset.extensionsUsed

Names of 3D Tiles extensions used somewhere in this tileset.

• Type: string[1-*]

• Each element in the array must be unique.

• Required: No

7.1.6. Tileset.extensionsRequired

Names of 3D Tiles extensions required to properly load this tileset.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 47

• Type: string[1-*]

• Each element in the array must be unique.

• Required: No

7.1.7. Tileset.extensions

Dictionary object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

7.1.8. Tileset.extras

Application-specific data.

• Type: any

• Required: No

7.2. Asset

Metadata about the entire tileset.

Properties

TYPE DESCRIPTION REQUIRED

version string
The 3D Tiles version. The version defines the JSON schema for the tileset JSON
and the base set of tile formats.

Yes

tileset
Version

string
Application-specific version of this tileset, e.g., for when an existing tileset is
updated.

No

extensions object Dictionary object with extension-specific objects. No

extras any Application-specific data. No

Additional properties are not allowed.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 48

7.2.1. Asset.version

The 3D Tiles version. The version defines the JSON schema for the tileset JSON and the base
set of tile formats.

• Type: string

• Required: Yes

7.2.2. Asset.tilesetVersion

Application-specific version of this tileset, e.g., for when an existing tileset is updated.

• Type: string

• Required: No

7.2.3. Asset.extensions

Dictionary object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

7.2.4. Asset.extras

Application-specific data.

• Type: any

• Required: No

7.3. Bounding Volume

A bounding volume that encloses a tile or its content. Exactly one box, region, or sphere
property is required.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 49

Properties

TYPE DESCRIPTION REQUIRED

box number[12]

An array of 12 numbers that define an oriented bounding box. The first
three elements define the x, y, and z values for the center of the box. The
next three elements (with indices 3, 4, and 5) define the x axis direction and
half-length. The next three elements (indices 6, 7, and 8) define the y axis
direction and half-length. The last three elements (indices 9, 10, and 11)
define the z axis direction and half-length.

No

region number[6]

An array of six numbers that define a bounding geographic region in
EPSG:4979 coordinates with the order [west, south, east, north, minimum
height, maximum height]. Longitudes and latitudes are in radians, and heights
are in meters above (or below) the WGS84 ellipsoid.

No

sphere number[4]
An array of four numbers that define a bounding sphere. The first three
elements define the x, y, and z values for the center of the sphere. The last
element (with index 3) defines the radius in meters.

No

extensions object Dictionary object with extension-specific objects. No

extras any Application-specific data. No

Additional properties are not allowed.

7.3.1. BoundingVolume.box

An array of 12 numbers that define an oriented bounding box. The first three elements define
the x, y, and z values for the center of the box. The next three elements (with indices 3, 4, and 5)
define the x axis direction and half-length. The next three elements (indices 6, 7, and 8) define
the y axis direction and half-length. The last three elements (indices 9, 10, and 11) define the z
axis direction and half-length.

• Type: number[12]

• Required: No

7.3.2. BoundingVolume.region

An array of six numbers that define a bounding geographic region in EPSG:4979 coordinates
with the order [west, south, east, north, minimum height, maximum height]. Longitudes and
latitudes are in radians, and heights are in meters above (or below) the WGS84 ellipsoid.

• Type: number[6]

• Required: No

OPEN GEOSPATIAL CONSORTIUM 18-053R2 50

7.3.3. BoundingVolume.sphere

An array of four numbers that define a bounding sphere. The first three elements define the x,
y, and z values for the center of the sphere. The last element (with index 3) defines the radius in
meters.

• Type: number[4]

• Required: No

7.3.4. BoundingVolume.extensions

Dictionary object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

7.3.5. BoundingVolume.extras

Application-specific data.

• Type: any

• Required: No

7.4. Extension

Dictionary object with extension-specific objects.

Additional properties are allowed.

• Type of each property: object

OPEN GEOSPATIAL CONSORTIUM 18-053R2 51

7.5. Extras

Application-specific data.

7.6. Properties

A dictionary object of metadata about per-feature properties.

Properties

TYPE DESCRIPTION REQUIRED

maximum number The maximum value of this property of all the features in the tileset. Yes

minimum number The minimum value of this property of all the features in the tileset. Yes

extensions object Dictionary object with extension-specific objects. No

extras any Application-specific data. No

Additional properties are not allowed.

7.6.1. Properties.maximum

The maximum value of this property of all the features in the tileset.

• Type: number

• Required: Yes

7.6.2. Properties.minimum

The minimum value of this property of all the features in the tileset.

• Type: number

• Required: Yes

OPEN GEOSPATIAL CONSORTIUM 18-053R2 52

7.6.3. Properties.extensions

Dictionary object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

7.6.4. Properties.extras

Application-specific data.

• Type: any

• Required: No

7.7. Tile

A tile in a 3D Tiles tileset.

Properties

TYPE DESCRIPTION REQUIRED

boundingVolume object

A bounding volume
that encloses a tile or
its content. Exactly
one box, region, or
sphere property is
required.

Yes

viewerRequestVolume object

A bounding volume
that encloses a tile or
its content. Exactly
one box, region, or
sphere property is
required.

No

geometricError number
The error, in meters,
introduced if this tile is
rendered and its children

Yes

OPEN GEOSPATIAL CONSORTIUM 18-053R2 53

TYPE DESCRIPTION REQUIRED

are not. At runtime, the
geometric error is used
to compute screen space
error (SSE), i.e., the error
measured in pixels.

refine string

Specifies if additive or
replacement refinement
is used when traversing
the tileset for rendering.
 This property is required
for the root tile of a
tileset; it is optional for
all other tiles. The default
is to inherit from the
parent tile.

No

transform number[16]

A floating-point 4×4
affine transformation
matrix, stored in column-
major order, that
transforms the tile’s
content—i.e., its features
as well as content.
boundingVolume,
boundingVolume, and
viewerRequestVolume
—from the tile’s local
coordinate system to the
parent tile’s coordinate
system, or, in the case of
a root tile, from the tile’s
local coordinate system
to the tileset’s coordinate
system. transform does
not apply to geometric
Error, nor does it apply
any volume property
when the volume is
a region, defined in
EPSG:4979 coordinates.

No, default: [1,0,0,0,0,1,0,0,0,0,1,0
,0,0,0,1]

content object
Metadata about the tile’s
content and a link to the
content.

No

children array[]

An array of objects that
define child tiles. Each
child tile content is fully
enclosed by its parent

No

OPEN GEOSPATIAL CONSORTIUM 18-053R2 54

TYPE DESCRIPTION REQUIRED

tile’s bounding volume
and, generally, has a
geometricError less than
its parent tile’s geometric
Error. For leaf tiles, the
length of this array is
zero, and children may
not be defined.

extensions object
Dictionary object with
extension-specific
objects.

No

extras any Application-specific data. No

Additional properties are not allowed.

7.7.1. Tile.boundingVolume

A bounding volume that encloses a tile or its content. Exactly one box, region, or sphere
property is required.

• Type: object

• Required: Yes

7.7.2. Tile.viewerRequestVolume

A bounding volume that encloses a tile or its content. Exactly one box, region, or sphere
property is required.

• Type: object

• Required: No

7.7.3. Tile.geometricError

The error, in meters, introduced if this tile is rendered and its children are not. At runtime, the
geometric error is used to compute screen space error (SSE), i.e., the error measured in pixels.

• Type: number

• Required: Yes

OPEN GEOSPATIAL CONSORTIUM 18-053R2 55

• Minimum: >= 0

7.7.4. Tile.refine

Specifies if additive or replacement refinement is used when traversing the tileset for rendering.
This property is required for the root tile of a tileset; it is optional for all other tiles. The default is
to inherit from the parent tile.

• Type: string

• Required: No

• Allowed values:

• "ADD"

• "REPLACE"

7.7.5. Tile.transform

A floating-point 4×4 affine transformation matrix, stored in column-major order, that transforms
the tile’s content—i.e., its features as well as content.boundingVolume, boundingVolume, and
viewerRequestVolume—from the tile’s local coordinate system to the parent tile’s coordinate
system, or, in the case of a root tile, from the tile’s local coordinate system to the tileset’s
coordinate system. transform does not apply to geometricError, nor does it apply any volume
property when the volume is a region, defined in EPSG:4979 coordinates.

• Type: number[16]

• Required: No, default: [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1]

7.7.6. Tile.content

Metadata about the tile’s content and a link to the content.

• Type: object

• Required: No

7.7.7. Tile.children

An array of objects that define child tiles. Each child tile content is fully enclosed by its
parent tile’s bounding volume and, generally, has a geometricError less than its parent tile’s
geometricError. For leaf tiles, the length of this array is zero, and children may not be defined.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 56

• Type: array[]

• Each element in the array must be unique.

• Required: No

7.7.8. Tile.extensions

Dictionary object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

7.7.9. Tile.extras

Application-specific data.

• Type: any

• Required: No

7.8. Tile Content

Metadata about the tile’s content and a link to the content.

Properties

TYPE DESCRIPTION REQUIRED

bounding
Volume

object
A bounding volume that encloses a tile or its content. Exactly one box,
region, or sphere property is required.

No

uri string
A uri that points to the tile’s content. When the uri is relative, it is relative to
the referring tileset JSON file.

Yes

extensions object Dictionary object with extension-specific objects. No

extras any Application-specific data. No

OPEN GEOSPATIAL CONSORTIUM 18-053R2 57

Additional properties are not allowed.

7.8.1. TileContent.boundingVolume

A bounding volume that encloses a tile or its content. Exactly one box, region, or sphere
property is required.

• Type: object

• Required: No

7.8.2. TileContent.uri

A uri that points to the tile’s content. When the uri is relative, it is relative to the referring tileset
JSON file.

• Type: string

• Required: Yes

7.8.3. TileContent.extensions

Dictionary object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

7.8.4. TileContent.extras

Application-specific data.

• Type: any

• Required: No

OPEN GEOSPATIAL CONSORTIUM 18-053R2 58

8

FEATURE TABLE

OPEN GEOSPATIAL CONSORTIUM 18-053R2 59

8 FEATURE TABLE

8.1. Overview

A Feature Table is a component of a tile’s binary body and describes position and appearance
properties required to render each feature in a tile. The Batch Table, on the other hand, contains
per-feature application-specific properties not necessarily used for rendering.

A Feature Table is used by tile formats like Batched 3D Model (b3dm) where each model is a
feature, and Point Cloud (pnts) where each point is a feature.

Per-feature properties are defined using tile format-specific semantics defined in each tile
format’s specification. For example, for Instanced 3D Model, SCALE_NON_UNIFORM defines the
non-uniform scale applied to each 3D model instance.

8.2. Layout

A Feature Table is composed of two parts: a JSON header and an optional binary body in little
endian. The JSON property names are tile format-specific semantics, and their values can either
be defined directly in the JSON, or refer to sections in the binary body. It is more efficient to
store long numeric arrays in the binary body. The following figure shows the Feature Table
layout:

Figure 20 — Feature Table layout

When a tile format includes a Feature Table, the Feature Table immediately follows
the tile’s header. The header will also contain featureTableJSONByteLength and
featureTableBinaryByteLength uint32 fields, which can be used to extract each respective
part of the Feature Table.

8.2.1. Padding

The JSON header must end on an 8-byte boundary within the containing tile binary. The JSON
header must be padded with trailing Space characters (0×20) to satisfy this requirement.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 60

The binary body must start and end on an 8-byte boundary within the containing tile binary. The
binary body must be padded with additional bytes, of any value, to satisfy this requirement.

Binary properties must start at a byte offset that is a multiple of the size in bytes of the
property’s implicit component type. For example, a property with the implicit component type
FLOAT has 4 bytes per element, and therefore must start at an offset that is a multiple of 4.
Preceding binary properties must be padded with additional bytes, of any value, to satisfy this
requirement.

8.2.2. JSON header

Feature Table values can be represented in the JSON header in three different ways:

1. A single value or object, e.g., "INSTANCES_LENGTH" : 4.

• This is used for global semantics like "INSTANCES_LENGTH", which defines the
number of model instances in an Instanced 3D Model tile.

2. An array of values, e.g., "POSITION" : [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.
0, 0.0, 1.0].

• This is used for per-feature semantics like “POSITION” in Instanced 3D
Model. Above, each POSITION refers to a float32[3] data type so there are
three features: Feature 0’s position=(1.0, 0.0, 0.0), Feature 1’s
position=(0.0, 1.0, 0.0), Feature 2’s position=(0.0, 0.0, 1.0).

3. A reference to data in the binary body, denoted by an object with a byteOffset
property, e.g., “SCALE” : { “byteOffset” : 24}.

• byteOffset specifies a zero-based offset relative to the start of the binary
body. The value of byteOffset must be a multiple of the size in bytes of the
property’s implicit component type, e.g., the “POSITION” property has the
component type FLOAT (4 bytes), so the value of byteOffset must be of a
multiple of 4.

• The semantic defines the allowed data type, e.g., when “POSITION” in
Instanced 3D Model refers to the binary body, the component type is FLOAT
and the number of components is 3.

• Some semantics allow for overriding the implicit component type. These
cases are specified in each tile format, e.g., "BATCH_ID" : { "byteOffset"
: 24, "componentType" : "UNSIGNED_BYTE"}.
The only valid properties in the JSON header are the defined semantics by
the tile format and optional extras and extensions properties. Application-
specific data should be stored in the Batch Table.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 61

8.2.3. Binary body

When the JSON header includes a reference to the binary, the provided byteOffset is used to
index into the data. The following figure shows indexing into the Feature Table binary body:

Figure 21 — Feature Table binary body layout

Values can be retrieved using the number of features, featuresLength; the desired feature id,
featureId; and the data type (component type and number of components) for the feature
semantic.

8.3. Implementation example

This section is non-normative

The following example accesses the position property using the POSITION semantic, which has a
float32[3] data type:

var byteOffset = featureTableJSON.POSITION.byteOffset;

var positionArray = new Float32Array(featureTableBinary.buffer, byteOffset,
featuresLength * 3); // There are three components for each POSITION feature.
var position = positionArray.subarray(featureId * 3, featureId * 3 + 3); //
Using subarray creates a view into the array, and not a new array.

Code for reading the Feature Table can be found in Cesium3DTileFeatureTable.js in the Cesium
implementation of 3D Tiles.

8.4. Property reference

8.4.1. Feature Table

A set of semantics containing per-tile and per-feature values defining the position and
appearance properties for features in a tile.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 62

https://github.com/AnalyticalGraphicsInc/cesium/blob/master/Source/Scene/Cesium3DTileFeatureTable.js

Properties

TYPE DESCRIPTION REQUIRED

extensions object Dictionary object with extension-specific objects. No

extras any Application-specific data. No

Additional properties are allowed.

• Type of each property: Property

8.4.1.1. FeatureTable.extensions

Dictionary object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

8.4.1.2. FeatureTable.extras

Application-specific data.

• Type: any

• Required: No

8.4.2. BinaryBodyReference

An object defining the reference to a section of the binary body of the features table where the
property values are stored if not defined directly in the JSON.

Properties

Type Description Required

byteOffset number The offset into the buffer in bytes. Yes

OPEN GEOSPATIAL CONSORTIUM 18-053R2 63

Additional properties are allowed.

8.4.2.1. BinaryBodyReference.byteOffset

The offset into the buffer in bytes.

• Type: number

• Required: Yes

• Minimum: >= 0

8.4.3. Property

A user-defined property which specifies per-feature application-specific metadata in a tile.
Values either can be defined directly in the JSON as an array, or can refer to sections in the
binary body with a BinaryBodyReference object.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 64

9

BATCH TABLE

OPEN GEOSPATIAL CONSORTIUM 18-053R2 65

9 BATCH TABLE

9.1. Overview

A Batch Table is a component of a tile’s binary body and contains per-feature application-specific
properties in a tile. These properties are queried at runtime for declarative styling and any
application-specific use cases such as populating a UI or issuing a REST API request. Some
example Batch Table properties are building heights, geographic coordinates, and database
primary keys.

A Batch Table is used by the following tile formats:

• Batched 3D Model (b3dm)

• Instanced 3D Model (i3dm)

• Point Cloud (pnts)

9.2. Layout

A Batch Table is composed of two parts: a JSON header and an optional binary body in little
endian. The JSON describes the properties, whose values either can be defined directly in the
JSON as an array, or can refer to sections in the binary body. It is more efficient to store long
numeric arrays in the binary body. The following figure shows the Batch Table layout:

Figure 22 — Batch Table layout

When a tile format includes a Batch Table, the Batch Table immediately follows the tile’s Feature
Table.
The header will also contain batchTableJSONByteLength and batchTableBinaryByteLengthu
int32 fields, which can be used to extract each respective part of the Batch Table.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 66

9.2.1. Padding

The JSON header must end on an 8-byte boundary within the containing tile binary. The JSON
header must be padded with trailing Space characters (0×20) to satisfy this requirement.

The binary body must start and end on an 8-byte boundary within the containing tile binary. The
binary body must be padded with additional bytes, of any value, to satisfy this requirement.

Binary properties must start at a byte offset that is a multiple of the size in bytes of the
property’s componentType. For example, a property with the component type FLOAT has 4
bytes per element, and therefore must start at an offset that is a multiple of 4. Preceding binary
properties must be padded with additional bytes, of any value, to satisfy this requirement.

9.2.2. JSON header

Batch Table values can be represented in the JSON header in two different ways:

1. An array of values, e.g., “name”: [‘name1’, ‘name2’, ‘name3’] or “height” :
 [10.0, 20.0, 15.0].

• Array elements can be any valid JSON data type, including objects and arrays.
Elements may be null.

• The length of each array is equal to batchLength, which is specified in
each tile format. This is the number of features in the tile. For example,
batchLength may be the number of models in a b3dm tile, the number of
instances in a i3dm tile, or the number of points (or number of objects) in a
pnts tile.

2. A reference to data in the binary body, denoted by an object with byteOffset,
componentType, and type properties, e.g., “height” : { “byteOffset” : 24,
“componentType” : “FLOAT”, “type” : “SCALAR”}.

• byteOffset specifies a zero-based offset relative to the start of the binary
body. The value of byteOffset must be a multiple of the size in bytes of the
property’s componentType, e.g., a property with the component type FLOAT
must have a byteOffset value that is a multiple of 4.

• componentType is the datatype of components in the attribute. Allowed
values are “BYTE”, “UNSIGNED_BYTE”, “SHORT”, “UNSIGNED_SHORT”, “INT”,
“UNSIGNED_INT”, “FLOAT”, and “DOUBLE”.

• type specifies if the property is a scalar or vector. Allowed values are
“SCALAR”, “VEC2”, “VEC3”, and “VEC4”.

The Batch Table JSON is a UTF-8 string containing JSON.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 67

Implementation Note: In JavaScript, the Batch Table JSON can be extracted from an
ArrayBuffer using the TextDecoder JavaScript API and transformed to a JavaScript object with
JSON.parse.

A batchId is used to access elements in each array and extract the corresponding properties.
For example, the following Batch Table has properties for a batch of two features:

{
 “id” : [“unique id”, “another unique id”],
 “displayName” : [“Building name”, “Another building name”],
 “yearBuilt” : [1999, 2015],
 “address” : [{”street” : “Main Street”, “houseNumber” : “1”},{”street” :
“Main Street”, “houseNumber” : “2”}]
}

The properties for the feature with batchId = 0 are

id[0] = ‘unique id’;
displayName[0] = ‘Building name’;
yearBuilt[0] = 1999;
address[0] = {street : ‘Main Street’, houseNumber : ‘1’};

The properties for batchId = 1 are

id[1] = ‘another unique id’;
displayName[1] = ‘Another building name’;
yearBuilt[1] = 2015;
address[1] = {street : ‘Main Street’, houseNumber : ‘2’};

9.2.3. Binary body

When the JSON header includes a reference to the binary section, the provided byteOffset is
used to index into the data, as shown in the following figure:

Figure 23 — Batch Table binary body layout

Values can be retrieved using the number of features, batchLength; the desired batch id,
batchId; and the componentType and type defined in the JSON header.

The following tables can be used to compute the byte size of a property.

COMPONENTTYPE SIZE IN BYTES

"BYTE" 1

OPEN GEOSPATIAL CONSORTIUM 18-053R2 68

COMPONENTTYPE SIZE IN BYTES

"UNSIGNED_BYTE" 1

`”SHORT`” 2

"UNSIGNED_SHORT" 2

"INT" 4

"UNSIGNED_INT" 4

"FLOAT" 4

"DOUBLE" 8

type Number of components

"SCALAR" 1

"VEC2" 2

"VEC3" 3

"VEC4" 4

9.3. Implementation example

This section is non-normative

The following examples access the “height” and “geographic” values respectively given the
following Batch Table JSON with batchLength of 10:

{
 “height” : {
 “byteOffset” : 0,
 “componentType” : “FLOAT”,
 “type” : “SCALAR”
 },
 “geographic” : {
 “byteOffset” : 40,
 “componentType” : “DOUBLE”,
 “type” : “VEC3”
 }
}

OPEN GEOSPATIAL CONSORTIUM 18-053R2 69

To get the "height" values:

var height = batchTableJSON.height;
var byteOffset = height.byteOffset;
var componentType = height.componentType;
var type = height.type;

var heightArrayByteLength = batchLength * sizeInBytes(componentType) *
numberOfComponents(type); // 10 * 4 * 1
var heightArray = new Float32Array(batchTableBinary.buffer, byteOffset,
heightArrayByteLength);
var heightOfFeature = heightArray[batchId];

To get the "geographic" values:

var geographic = batchTableJSON.geographic;
var byteOffset = geographic.byteOffset;
var componentType = geographic.componentType;
var type = geographic.type;
var componentSizeInBytes = sizeInBytes(componentType)
var numberOfComponents = numberOfComponents(type);

var geographicArrayByteLength = batchLength * componentSizeInBytes *
numberOfComponents // 10 * 8 * 3
var geographicArray = new Float64Array(batchTableBinary.buffer, byteOffset,
geographicArrayByteLength);

// Using subarray creates a view into the array, and not a new array._
var geographicOfFeature = positionArray.subarray(batchId * numberOfComponents,
batchId * numberOfComponents + numberOfComponents);

Code for reading the Batch Table can be found in Cesium3DTileBatchTable.js in the Cesium
implementation of 3D Tiles.

9.4. Property reference

9.4.1. Batch Table

A set of properties defining application-specific metadata for features in a tile.

Properties

TYPE DESCRIPTION REQUIRED

extensions object Dictionary object with extension-specific objects. No

extras any Application-specific data. No

Additional properties are allowed.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 70

https://github.com/AnalyticalGraphicsInc/cesium/blob/master/Source/Scene/Cesium3DTileBatchTable.js

• Type of each property: Property

9.4.1.1. BatchTable.extensions

Dictionary object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

9.4.1.2. BatchTable.extras

Application-specific data.

• Type: any

• Required: No

9.4.2. BinaryBodyReference

An object defining the reference to a section of the binary body of the batch table where the
property values are stored if not defined directly in the JSON.

Properties

TYPE DESCRIPTION REQUIRED

byteOffset number The offset into the buffer in bytes. Yes

componentType string The datatype of components in the property. Yes

type string Specifies if the property is a scalar or vector. Yes

Additional properties are allowed.

9.4.2.1. BinaryBodyReference.byteOffset

The offset into the buffer in bytes.

• Type: number

OPEN GEOSPATIAL CONSORTIUM 18-053R2 71

• Required: Yes

• Minimum: >= 0

9.4.2.2. BinaryBodyReference.componentType

The datatype of components in the property.

• Type: string

• Required: Yes

• Allowed values:

• "BYTE"

• "UNSIGNED_BYTE"

• "SHORT"

• "UNSIGNED_SHORT"

• "INT"

• "UNSIGNED_INT"

• "FLOAT"

• "DOUBLE"

9.4.2.3. BinaryBodyReference.type

Specifies if the property is a scalar or vector.

• Type: string

• Required: Yes

• Allowed values:

• "SCALAR"

• "VEC2"

• "VEC3"

• "VEC4"

OPEN GEOSPATIAL CONSORTIUM 18-053R2 72

9.4.3. Property

A user-defined property which specifies per-feature application-specific metadata in a tile.
Values either can be defined directly in the JSON as an array, or can refer to sections in the
binary body with a BinaryBodyReference object.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 73

10

TILE FORMAT
SPECIFICATIONS

OPEN GEOSPATIAL CONSORTIUM 18-053R2 74

10 TILE FORMAT SPECIFICATIONS

Each tile’s content.uri property points to a tile that is one of the formats listed in the table
below.

FORMAT USES

Batched 3D Model
(b3dm)

Heterogeneous 3D models. E.g. textured terrain and surfaces, 3D building exteriors and
interiors, massive models.

Instanced 3D Model
(i3dm)

3D model instances. E.g. trees, windmills, bolts.

Point Cloud (pnts) Massive number of points.

Composite (cmpt) Concatenate tiles of different formats into one tile.

A tileset can contain any combination of tile formats. 3D Tiles may also support different
formats in the same tile using a Composite tile.

10.1. Batched 3D Model

10.1.1. Overview

Batched 3D Model allows offline batching of heterogeneous 3D models, such as different
buildings in a city, for efficient streaming to a web client for rendering and interaction. Efficiency
comes from transferring multiple models in a single request and rendering them in the least
number of WebGL draw calls necessary. Using the core 3D Tiles spec language, each model is a
feature.

Per-model properties, such as IDs, enable individual models to be identified and updated at
runtime, e.g., show/hide, highlight color, etc. Properties may be used, for example, to query a
web service to access metadata, such as passing a building’s ID to get its address. Or a property
might be referenced on the fly for changing a model’s appearance, e.g., changing highlight color
based on a property value.

A Batched 3D Model tile is a binary blob in little endian.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 75

10.1.2. Layout

A tile is composed of two sections: a header immediately followed by a body. The following
figure shows the Batched 3D Model layout (dashes indicate optional fields):

Figure 24 — Batched 3D Model layout

10.1.2.1. Padding

A tile’s byteLength must be aligned to an 8-byte boundary. The contained Feature Table and
Batch Table must conform to their respective padding requirement.

The binary glTF must start and end on an 8-byte boundary so that glTF’s byte-alignment
guarantees are met. This can be done by padding the Feature Table or Batch Table if they are
present.

10.1.3. Header

The 28-byte header contains the following fields:

FIELD NAME
DATA
TYPE

DESCRIPTION

magic
4-byte
ANSI string

"b3dm". This can be used to identify the content as a
Batched 3D Model tile.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 76

FIELD NAME
DATA
TYPE

DESCRIPTION

version uint32
The version of the Batched 3D Model format. It is currently
1.

byteLength uint32 The length of the entire tile, including the header, in bytes.

featureTableJSONByteLength uint32 The length of the Feature Table JSON section in bytes.

featureTableBinaryByteLength uint32 The length of the Feature Table binary section in bytes.

batchTableJSONByteLength uint32
The length of the Batch Table JSON section in bytes. Zero
indicates there is no Batch Table.

batchTableBinaryByteLength uint32
The length of the Batch Table binary section in bytes. If
batchTableJSONByteLength is zero, this will also be
zero.

The body section immediately follows the header section, and is composed of three fields:
Feature Table, Batch Table, and Binary glTF.

10.1.4. Feature Table

Contains values for b3dm semantics.

More information is available in the Feature Table specification.

10.1.4.1. Semantics

10.1.4.1.1. Feature semantics

There are currently no per-feature semantics.

10.1.4.1.2. Global semantics

These semantics define global properties for all features.

SEMANTIC DATA TYPE DESCRIPTION REQUIRED

BATCH_
LENGTH

uint32
The number of distinguishable models, also called features, in the batch. If
the Binary glTF does not have a batchId attribute, this field must be 0.

Yes.

RTC_
CENTER

float32[3]
A 3-component array of numbers defining the center position when
positions are defined relative-to-center, (see Coordinate system).

No.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 77

10.1.5. Batch Table

The Batch Table contains per-model application-specific metadata, indexable by batchId, that
can be used for declarative styling and application-specific use cases such as populating a UI
or issuing a REST API request. In the binary glTF section, each vertex has an numeric batchId
attribute in the integer range [0, number of models in the batch   —   1]. The batchId
indicates the model to which the vertex belongs. This allows models to be batched together and
still be identifiable.

See the Batch Table reference for more information.

10.1.6. Binary glTF

Batched 3D Model embeds glTF 2.0 containing model geometry and texture information.

The binary glTF immediately follows the Feature Table and Batch Table. It may embed all of its
geometry, texture, and animations, or it may refer to external sources for some or all of these
data.

As described above, each vertex has a batchId attribute indicating the model to which it
belongs. For example, vertices for a batch with three models may look like this:

batchId: [0, 0, 0, …, 1, 1, 1, …, 2, 2, 2, …]
position: [xyz, xyz, xyz, …, xyz, xyz, xyz, …, xyz, xyz, xyz, …]
normal: [xyz, xyz, xyz, …, xyz, xyz, xyz, …, xyz, xyz, xyz, …]

Vertices do not need to be ordered by batchId, so the following is also OK:

batchId: [0, 1, 2, …, 2, 1, 0, …, 1, 2, 0, …]
position: [xyz, xyz, xyz, …, xyz, xyz, xyz, …, xyz, xyz, xyz, …]
normal: [xyz, xyz, xyz, …, xyz, xyz, xyz, …, xyz, xyz, xyz, …]

Note that a vertex can’t belong to more than one model; in that case, the vertex needs to be
duplicated so the batchIds can be assigned.

The batchId parameter is specified in a glTF mesh primitive by providing the _BATCHID attribute
semantic, along with the index of the batchId accessor.For example,

"primitives": [
 {
 "attributes":{
 "_BATCHID":0
 }
 }
]

{
 "accessors":[
 {
 "bufferView":1,
 "byteOffset":0,
 "componentType":5125,

OPEN GEOSPATIAL CONSORTIUM 18-053R2 78

https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#binary-gltf-layout
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#reference-primitive
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#accessors

 "count":4860,
 "max":[2],
 "min":[0],
 "type":"SCALAR"
 }
]
}

The accessor.type must be a value of “SCALAR”. All other properties must conform to the glTF
schema, but have no additional requirements.

When a Batch Table is present or the BATCH_LENGTH property is greater than 0, the _BATCHID
attribute is required; otherwise, it is not.

10.1.6.1. Coordinate system

By default embedded glTFs use a right handed coordinate system where the y -axis is up. For
consistency with the z-up coordinate system of 3D Tiles, glTFs must be transformed at runtime.
See glTF transforms for more details.

Vertex positions may be defined relative-to-center for high-precision rendering, see Precisions,
Precisions. If defined, RTC_CENTER specifies the center position that all vertex positions are
relative to after the coordinate system transform and glTF node hierarchy transforms have been
applied.

10.1.7. File extension and MIME type

Batched 3D Model tiles use the .b3dm extension and application/octet-stream MIME type.

An explicit file extension is optional. Valid implementations may ignore it and identify a content’s
format by the magic field in its header.

10.1.8. Implementation example

This section is non-normative

Code for reading the header can be found in Batched3DModelTileContent.js in the Cesium
implementation of 3D Tiles.

10.1.8.1. Property reference

10.1.8.1.1. Batched 3D Model Feature Table

A set of Batched 3D Model semantics that contain additional information about features in a
tile.

Properties

OPEN GEOSPATIAL CONSORTIUM 18-053R2 79

http://help.agi.com/AGIComponents/html/BlogPrecisionsPrecisions.htm
http://help.agi.com/AGIComponents/html/BlogPrecisionsPrecisions.htm
https://github.com/AnalyticalGraphicsInc/cesium/blob/master/Source/Scene/Batched3DModel3DTileContent.js

TYPE DESCRIPTION REQUIRED

extensions object Dictionary object with extension-specific objects. No

extras any Application-specific data. No

BATCH_
LENGTH

object,
number[1],
number

A GlobalPropertyScalar object defining a numeric property for all
features. See the corresponding property semantic in Semantics.

Yes

RTC_
CENTER

object,
number[3]

A GlobalPropertyCartesian3 object defining a 3-component numeric
property for all features. See the corresponding property semantic in
Semantics.

No

Additional properties are allowed.

• Type of each property: Property

10.1.8.1.1.1. Batched3DModelFeatureTable.extensions

Dictionary object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

10.1.8.1.1.2. Batched3DModelFeatureTable.extras

Application-specific data.

• Type: any

• Required: No

10.1.8.1.1.3. Batched3DModelFeatureTable.BATCH_LENGTH

A GlobalPropertyCartesian3 object defining a numeric property for all features. See the
corresponding property semantic in Semantics.

• Type: object, number[1], number

• Required: Yes

OPEN GEOSPATIAL CONSORTIUM 18-053R2 80

10.1.8.1.1.4. Batched3DModelFeatureTable.RTC_CENTER

A GlobalPropertyCartesian3 object defining a 3-component numeric property for all features.
See the corresponding property semantic in Semantics.

• Type: object, number[3]

• Required: No

10.1.8.1.2. BinaryBodyReference

An object defining the reference to a section of the binary body of the features table where the
property values are stored if not defined directly in the JSON.

Properties

Type Description Required

byteOffset number The offset into the buffer in bytes. Yes

Additional properties are allowed.

10.1.8.1.2.1. BinaryBodyReference.byteOffset

The offset into the buffer in bytes.

• Type: number

• Required: Yes

• Minimum: >= 0

10.1.8.1.3. GlobalPropertyCartesian3

An object defining a global 3-component numeric property values for all features.

10.1.8.1.4. GlobalPropertyScalar

An object defining a global numeric property values for all features.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 81

10.1.8.1.5. Property

A user-defined property which specifies per-feature application-specific metadata in a tile.
Values either can be defined directly in the JSON as an array, or can refer to sections in the
binary body with a BinaryBodyReference object.

10.2. Instanced 3D Model

10.2.1. Overview

Instanced 3D Model is a tile format for efficient streaming and rendering of a large number of
models, called instances, with slight variations. In the simplest case, the same tree model, for
example, may be located—or instanced—in several places. Each instance references the same
model and has per-instance properties, such as position. Using the core 3D Tiles spec language,
each instance is a feature.

In addition to trees, Instanced 3D Model is useful for exterior features such as fire hydrants,
sewer caps, lamps, and traffic lights, and for interior CAD features such as bolts, valves, and
electrical outlets.

An Instanced 3D Model tile is a binary blob in little endian.

Implementation Note: A Composite tile can be used to create tiles with different types of
instanced models, e.g., trees and traffic lights by combing two Instanced 3D Model tiles.

Implementation Note: Instanced 3D Model maps well to the ANGLE_instanced_arrays extension
for efficient rendering with WebGL.

10.2.2. Layout

A tile is composed of a header section immediately followed by a binary body. The following
figure shows the Instanced 3D Model layout (dashes indicate optional fields):

OPEN GEOSPATIAL CONSORTIUM 18-053R2 82

https://www.khronos.org/registry/webgl/extensions/ANGLE_instanced_arrays/

Figure 25 — Instanced 3D Model layout

10.2.2.1. Padding

A tile’s byteLength must be aligned to an 8-byte boundary. The contained Feature Table and
Batch Table must conform to their respective padding requirement.

The binary glTF (if present) must start and end on an 8-byte boundary so that glTF’s byte-
alignment guarantees are met. This can be done by padding the Feature Table or Batch Table if
they are present.

Otherwise, if the glTF field is a UTF-8 string, it must be padded with trailing Space characters
(0×20) to satisfy alignment requirements of the tile, which must be removed at runtime before
requesting the glTF asset.

10.2.3. Header

The 32-byte header contains the following fields:

FIELD NAME
DATA
TYPE

DESCRIPTION

magic
4-byte
ANSI
string

"i3dm". This can be used to identify the content as an
Instanced 3D Model tile.

version uint32
The version of the Instanced 3D Model format. It is currently
1.

byteLength uint32 The length of the entire tile, including the header, in bytes.

featureTableJSONByteLength uint32 The length of the Feature Table JSON section in bytes.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 83

FIELD NAME
DATA
TYPE

DESCRIPTION

featureTableBinaryByteLength uint32 The length of the Feature Table binary section in bytes.

batchTableJSONByteLength uint32
The length of the Batch Table JSON section in bytes. Zero
indicates that there is no Batch Table.

batchTableBinaryByteLength uint32
The length of the Batch Table binary section in bytes. If
batchTableJSONByteLength is zero, this will also be
zero.

gltfFormat uint32
Indicates the format of the glTF field of the body. 0 indicates
it is a uri, 1 indicates it is embedded binary glTF. See the gl
TF section below.

The body section immediately follows the header section and is composed of three fields:
Feature Table, Batch Table, and glTF.

10.2.4. Feature Table

The Feature Table contains values for i3dm semantics used to create instanced models. More
information is available in the Feature Table specification.

10.2.4.1. Semantics

10.2.4.1.1. Instance semantics

These semantics map to an array of feature values that are used to create instances. The length
of these arrays must be the same for all semantics and is equal to the number of instances.

The value for each instance semantic must be a reference to the Feature Table binary body; they
cannot be embedded in the Feature Table JSON header.

If a semantic has a dependency on another semantic, that semantic must be defined.
If both SCALE and SCALE_NON_UNIFORM are defined for an instance, both scaling operations will
be applied.
If both POSITION and POSITION_QUANTIZED are defined for an instance, the higher precision
POSITION will be used.
If NORMAL_UP, NORMAL_RIGHT, NORMAL_UP_OCT32P, and NORMAL_RIGHT_OCT32P are defined for an
instance, the higher precision NORMAL_UP and NORMAL_RIGHT will be used.

SEMANTIC DATA TYPE DESCRIPTION REQUIRED

POSITION float32[3]
A 3-component array of numbers containing x,
y, and z Cartesian coordinates for the position
of the instance.

Yes, unless
POSITION_

OPEN GEOSPATIAL CONSORTIUM 18-053R2 84

SEMANTIC DATA TYPE DESCRIPTION REQUIRED

QUANTIZED is
defined.

POSITION_
QUANTIZED

uint16[3]
A 3-component array of numbers containing x,
y, and z in quantized Cartesian coordinates for
the position of the instance.

Yes, unless POSITION
is defined.

NORMAL_UP float32[3]
A unit vector defining the up direction for the
orientation of the instance.

No, unless NORMAL_
RIGHT is defined.

NORMAL_
RIGHT

float32[3]
A unit vector defining the right direction
for the orientation of the instance. Must be
orthogonal to up.

No, unless NORMAL_
UP is defined.

NORMAL_UP_
OCT32P

uint16[2]
An oct-encoded unit vector with 32-bits of
precision defining the up direction for the
orientation of the instance.

No, unless NORMAL_
RIGHT_OCT32P is
defined.

NORMAL_
RIGHT_
OCT32P

uint16[2]

An oct-encoded unit vector with 32-bits of
precision defining the right direction for the
orientation of the instance. Must be orthogonal
to up.

No, unless NORMAL_
UP_OCT32P is
defined.

SCALE float32
A number defining a scale to apply to all axes of
the instance.

No.

SCALE_NON_
UNIFORM

float32[3]
A 3-component array of numbers defining the
scale to apply to the x, y, and z axes of the
instance.

No.

BATCH_ID
uint8, uint16
(default), or uint32

The batchId of the instance that can be used
to retrieve metadata from the Batch Table.

No.

10.2.4.1.2. Global semantics

These semantics define global properties for all instances.

SEMANTIC DATA TYPE DESCRIPTION REQUIRED

INSTANCES_
LENGTH

uint32
The number of instances to generate. The length of
each array value for an instance semantic should be
equal to this.

Yes.

RTC_CENTER float32[3]
A 3-component array of numbers defining the center
position when instance positions are defined relative-
to-center.

No.

QUANTIZED_
VOLUME_OFFSET

float32[3]
A 3-component array of numbers defining the offset
for the quantized volume.

No, unless
POSITION_
QUANTIZED is
defined.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 85

SEMANTIC DATA TYPE DESCRIPTION REQUIRED

QUANTIZED_
VOLUME_SCALE

float32[3]
A 3-component array of numbers defining the scale for
the quantized volume.

No, unless
POSITION_
QUANTIZED is
defined.

EAST_NORTH_UP boolean
When true and per-instance orientation is not defined,
each instance will default to the east/north/up
reference frame’s orientation on the WGS84 ellipsoid.

No.

Examples using these semantics can be found in the examples section.

10.2.4.2. Instance orientation

An instance’s orientation is defined by an orthonormal basis created by an up and right vector.
The orientation will be transformed by the Tile transform.

The x vector in the standard basis maps to the right vector in the transformed basis, and the y
vector maps to the up vector.
The z vector would map to a forward vector, but it is omitted because it will always be the
cross product of right and up.

Figure 26 — A box in the standard basis

OPEN GEOSPATIAL CONSORTIUM 18-053R2 86

Figure 27 — A box transformed into a rotated basis

10.2.4.2.1. Oct-encoded normal vectors

If NORMAL_UP and NORMAL_RIGHT are not defined for an instance, its orientation may be stored as
oct-encoded normals in NORMAL_UP_OCT32P and NORMAL_RIGHT_OCT32P.
These define up and right using the oct-encoding described in A Survey of Efficient
Representations of Independent Unit Vectors. Oct-encoded values are stored in unsigned,
unnormalized range ([0, 65535]) and then mapped to a signed normalized range ([-1.0, 1.0])
at runtime.

An implementation for encoding and decoding these unit vectors can be found in Cesium’s
AttributeCompression module.

10.2.4.2.2. Default orientation

If NORMAL_UP and NORMAL_RIGHT or NORMAL_UP_OCT32P and NORMAL_RIGHT_OCT32P are not
present, the instance will not have a custom orientation. If EAST_NORTH_UP is true, the instance
is assumed to be on the WGS84 ellipsoid and its orientation will default to the east/north/up
reference frame at its cartographic position.
This is suitable for instanced models such as trees whose orientation is always facing up from
their position on the ellipsoid’s surface.

10.2.4.3. Instance position

POSITION defines the location for an instance before any tile transforms are applied.

10.2.4.3.1. RTC_CENTER

Positions may be defined relative-to-center for high-precision rendering, see Precisions,
Precisions. If defined, RTC_CENTER specifies the center position and all instance positions are
treated as relative to this value.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 87

http://jcgt.org/published/0003/02/01/
http://jcgt.org/published/0003/02/01/
https://github.com/AnalyticalGraphicsInc/cesium/blob/master/Source/Core/AttributeCompression.js
http://help.agi.com/AGIComponents/html/BlogPrecisionsPrecisions.htm
http://help.agi.com/AGIComponents/html/BlogPrecisionsPrecisions.htm

10.2.4.3.2. Quantized positions

If POSITION is not defined for an instance, its position may be stored in POSITION_QUANTIZED,
which defines the instance position relative to the quantized volume.
If neither POSITION or POSITION_QUANTIZED are defined, the instance will not be created.

A quantized volume is defined by offset and scale to map quantized positions into local space,
as shown in the following figure:

Figure 28 — A quantized volume

offset is stored in the global semantic QUANTIZED_VOLUME_OFFSET, and scale is stored in the
global semantic QUANTIZED_VOLUME_SCALE.
If those global semantics are not defined, POSITION_QUANTIZED cannot be used.

Quantized positions can be mapped to local space using the following formula:

POSITION = POSITION_QUANTIZED * QUANTIZED_VOLUME_SCALE / 65535.0 + QUANTIZED_
VOLUME_OFFSET

OPEN GEOSPATIAL CONSORTIUM 18-053R2 88

10.2.4.4. Instance scaling

Scaling can be applied to instances using the SCALE and SCALE_NON_UNIFORM semantics.
SCALE applies a uniform scale along all axes, and SCALE_NON_UNIFORM applies scaling to the x, y,
and z axes independently.

10.2.4.5. Examples

These examples show how to generate JSON and binary buffers for the Feature Table.

10.2.4.5.1. Positions only

In this minimal example, we place four instances on the corners of a unit length square with the
default orientation:

var featureTableJSON = {
 INSTANCES_LENGTH :4,
 POSITION :{
 byteOffset :0
 }
};

var featureTableBinary = new Buffer(new Float32Array([
 0.0,0.0,0.0,
 1.0,0.0,0.0,
 0.0,0.0,1.0,
 1.0,0.0,1.0
]).buffer);

10.2.4.5.2. Quantized positions and oct-encoded normals

In this example, the four instances will be placed with an orientation up of [0.0, 1.0, 0.0]
and right of [1.0, 0.0, 0.0] in oct-encoded format
and they will be placed on the corners of a quantized volume that spans from -250.0 to 250.0
units in the x and z directions:

var featureTableJSON = {
 INSTANCES_LENGTH : 4,
 QUANTIZED_VOLUME_OFFSET : [-250.0,0.0,-250.0],
 QUANTIZED_VOLUME_SCALE : [500.0,0.0,500.0],
 POSITION_QUANTIZED : {
 byteOffset : 0
 },
 NORMAL_UP_OCT32P : {
 byteOffset : 24
 },
 NORMAL_RIGHT_OCT32P : {
 byteOffset : 40
 }
};

OPEN GEOSPATIAL CONSORTIUM 18-053R2 89

var positionQuantizedBinary = new Buffer(new Uint16Array([
 0,0,0,
 65535,0,0,
 0,0,65535,
 65535,0,65535
]).buffer);

var normalUpOct32PBinary = new Buffer(new Uint16Array([
 32768,65535,
 32768,65535,
 32768,65535,
 32768,65535
]).buffer);

var normalRightOct32PBinary = new Buffer(new Uint16Array([
 65535,32768,
 65535,32768,
 65535,32768,
 65535,32768
]).buffer);

var featureTableBinary = Buffer.concat([positionQuantizedBinary,
normalUpOct32PBinary, normalRightOct32PBinary]);

10.2.5. Batch Table

Contains metadata organized by batchId that can be used for declarative styling. See the Batch
Table reference for more information.

10.2.6. glTF

Instanced 3D Model embeds glTF 2.0 containing model geometry and texture information.

The glTF asset to be instanced is stored after the Feature Table and Batch Table. It may embed
all of its geometry, texture, and animations, or it may refer to external sources for some or all of
these data.

header.gltfFormat determines the format of the glTF field

• When the value of header.gltfFormat is 0, the glTF field is a UTF-8 string, which
contains a uri of the glTF or binary glTF model content.

• When the value of header.gltfFormat is 1, the glTF field is a binary blob containing
binary glTF.

In either case, header.gltfByteLength contains the length of the glTF field in bytes.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 90

https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#binary-gltf-layout

10.2.6.1. Coordinate system

By default glTFs use a right handed coordinate system where the y -axis is up. For consistency
with the z-up coordinate system of 3D Tiles, glTFs must be transformed at runtime. See glTF
transforms for more details.

10.2.7. File extension and MIME type

Instanced 3D models tiles use the .i3dm extension and application/octet-stream MIME
type.

An explicit file extension is optional. Valid implementations may ignore it and identify a content’s
format by the magic field in its header.

10.2.8. Property reference

10.2.8.1. Instanced 3D Model Feature Table

A set of Instanced 3D Model semantics that contains values defining the position and
appearance properties for instanced models in a tile.

Properties

TYPE DESCRIPTION REQUIRED

extensions object Dictionary object with extension-specific objects. No

extras any Application-specific data. No

POSITION object
A BinaryBodyReference object defining the reference to a section
of the binary body where the property values are stored. See the
corresponding property semantic in Semantics.

No

POSITION_
QUANTIZED

object
A BinaryBodyReference object defining the reference to a section
of the binary body where the property values are stored. See the
corresponding property semantic in Semantics.

No

NORMAL_UP object
A BinaryBodyReference object defining the reference to a section
of the binary body where the property values are stored. See the
corresponding property semantic in Semantics.

No

NORMAL_RIGHT object
A BinaryBodyReference object defining the reference to a section
of the binary body where the property values are stored. See the
corresponding property semantic in Semantics.

No

OPEN GEOSPATIAL CONSORTIUM 18-053R2 91

TYPE DESCRIPTION REQUIRED

NORMAL_UP_
OCT32P

object
A BinaryBodyReference object defining the reference to a section
of the binary body where the property values are stored. See the
corresponding property semantic in Semantics.

No

NORMAL_RIGHT_
OCT32P

object
A BinaryBodyReference object defining the reference to a section
of the binary body where the property values are stored. See the
corresponding property semantic in Semantics.

No

SCALE object
A BinaryBodyReference object defining the reference to a section
of the binary body where the property values are stored. See the
corresponding property semantic in Semantics.

No

SCALE_NON_
UNIFORM

object
A BinaryBodyReference object defining the reference to a section
of the binary body where the property values are stored. See the
corresponding property semantic in Semantics.

No

BATCH_ID object
A BinaryBodyReference object defining the reference to a section
of the binary body where the property values are stored. See the
corresponding property semantic in Semantics.

No

INSTANCES_
LENGTH

object,
number[1],
number

A GlobalPropertyScalar object defining a numeric property for all
features. See the corresponding property semantic in Semantics.

Yes

QUANTIZED_
VOLUME_OFFSET

object,
number[3]

A GlobalPropertyCartesian3 object defining a 3-component
numeric property for all features. See the corresponding property
semantic in Semantics.

No

QUANTIZED_
VOLUME_SCALE

object,
number[3]

A GlobalPropertyCartesian3object defining a 3-component
numeric property for all features. See the corresponding property
semantic in Semantics.

No

Additional properties are allowed.

• Type of each property: Property

10.2.8.1.1. Instanced3DModelFeatureTable.extensions

Dictionary object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

OPEN GEOSPATIAL CONSORTIUM 18-053R2 92

10.2.8.1.2. Instanced3DModelFeatureTable.extras

Application-specific data.

• Type: any

• Required: No

10.2.8.1.3. Instanced3DModelFeatureTable.POSITION

A BinaryBodyReference object defining the reference to a section of the binary body where the
property values are stored. See the corresponding property semantic in Semantics.

• Type: object

• Required: No

10.2.8.1.4. Instanced3DModelFeatureTable.POSITION_QUANTIZED

A BinaryBodyReference object defining the reference to a section of the binary body where the
property values are stored. See the corresponding property semantic in Semantics.

• Type: object

• Required: No

10.2.8.1.5. Instanced3DModelFeatureTable.NORMAL_UP

A BinaryBodyReference object defining the reference to a section of the binary body where the
property values are stored. See the corresponding property semantic in Semantics.

• Type: object

• Required: No

10.2.8.1.6. Instanced3DModelFeatureTable.NORMAL_RIGHT

A BinaryBodyReference object defining the reference to a section of the binary body where the
property values are stored. See the corresponding property semantic in Semantics.

• Type: object

OPEN GEOSPATIAL CONSORTIUM 18-053R2 93

• Required: No

10.2.8.1.7. Instanced3DModelFeatureTable.NORMAL_UP_OCT32P

A BinaryBodyReference object defining the reference to a section of the binary body where the
property values are stored. See the corresponding property semantic in Semantics.

• Type: object

• Required: No

10.2.8.1.8. Instanced3DModelFeatureTable.NORMAL_RIGHT_OCT32P

A BinaryBodyReference object defining the reference to a section of the binary body where the
property values are stored. See the corresponding property semantic in Semantics.

• Type: object

• Required: No

10.2.8.1.9. Instanced3DModelFeatureTable.SCALE

A BinaryBodyReference object defining the reference to a section of the binary body where the
property values are stored. See the corresponding property semantic in Semantics.

• Type: object

• Required: No

10.2.8.1.10. Instanced3DModelFeatureTable.SCALE_NON_UNIFORM

A BinaryBodyReference object defining the reference to a section of the binary body where the
property values are stored. See the corresponding property semantic in Semantics.

• Type: object

• Required: No

10.2.8.1.11. Instanced3DModelFeatureTable.BATCH_ID

A BinaryBodyReference object defining the reference to a section of the binary body where the
property values are stored. See the corresponding property semantic in Semantics.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 94

• Type: object

• Required: No

10.2.8.1.12. Instanced3DModelFeatureTable.INSTANCES_LENGTH

A GlobalPropertyScalar object defining a numeric property for all features. See the
corresponding property semantic in Semantics.

• Type: object, number[1], number

• Required: Yes

10.2.8.1.13. Instanced3DModelFeatureTable.QUANTIZED_VOLUME_OFFSET

A GlobalPropertyCartesian3 object defining a 3-component numeric property for all features.
See the corresponding property semantic in Semantics.

• Type: object, number[3]

• Required: No

10.2.8.1.14. Instanced3DModelFeatureTable.QUANTIZED_VOLUME_SCALE

A GlobalPropertyCartesian3 object defining a 3-component numeric property for all features.
See the corresponding property semantic in Semantics.

• Type: object, number[3]

• Required: No

10.2.8.2. BinaryBodyReference

An object defining the reference to a section of the binary body of the features table where the
property values are stored if not defined directly in the JSON.

Properties

Type Description Required

byteOffset number The offset into the buffer in bytes. Yes

OPEN GEOSPATIAL CONSORTIUM 18-053R2 95

Additional properties are allowed.

10.2.8.2.1. BinaryBodyReference.byteOffset

The offset into the buffer in bytes.

• Type: number

• Required: Yes

• Minimum: >= 0

10.2.8.3. GlobalPropertyCartesian3

An object defining a global 3-component numeric property values for all features.

10.2.8.4. GlobalPropertyScalar

An object defining a global numeric property values for all features.

10.2.8.5. Property

A user-defined property which specifies per-feature application-specific metadata in a tile.
Values either can be defined directly in the JSON as an array, or can refer to sections in the
binary body with a BinaryBodyReference object.

10.3. Point Cloud

10.3.1. Overview

The Point Cloud tile format enables efficient streaming of massive point clouds for 3D
visualization. Each point is defined by a position and by optional properties used to define its
appearance, such as color and normal, as well as optional properties that define application-
specific metadata.

Using 3D Tiles terminology, each point is a feature.

A Point Cloud tile is a binary blob in little endian.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 96

10.3.2. Layout

A tile is composed of a header section immediately followed by a body section. The following
figure shows the Point Cloud layout (dashes indicate optional fields):

Figure 29 — Point Cloud layout

10.3.2.1. Padding

A tile’s byteLength must be aligned to an 8-byte boundary. The contained Feature Table and
Batch Table must conform to their respective padding requirement.

10.3.3. Header

The 28-byte header contains the following fields:

FIELD NAME
DATA
TYPE

DESCRIPTION

magic
4-byte
ANSI string

"pnts". This can be used to identify the content as a Point
Cloud tile.

version uint32 The version of the Point Cloud format. It is currently 1.

byteLength uint32 The length of the entire tile, including the header, in bytes.

featureTableJSONByteLength uint32 The length of the Feature Table JSON section in bytes.

featureTableBinaryByteLength uint32 The length of the Feature Table binary section in bytes.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 97

FIELD NAME
DATA
TYPE

DESCRIPTION

batchTableJSONByteLength uint32
The length of the Batch Table JSON section in bytes. Zero
indicates that there is no Batch Table.

batchTableBinaryByteLength uint32
The length of the Batch Table binary section in bytes. If
batchTableJSONByteLength is zero, this will also be
zero.

The body section immediately follows the header section, and is composed of a Feature Table
and Batch Table.

10.3.4. Feature Table

Contains per-tile and per-point values that define where and how to render points.
More information is available in the Feature Table specification.

10.3.4.1. Semantics

10.3.4.1.1. Point semantics

These semantics map to an array of feature values that define each point. The length of these
arrays must be the same for all semantics and is equal to the number of points.
The value for each point semantic must be a reference to the Feature Table binary body; they
cannot be embedded in the Feature Table JSON header.

If a semantic has a dependency on another semantic, that semantic must be defined.
If both POSITION and POSITION_QUANTIZED are defined for a point, the higher precision
POSITION will be used.
If both NORMAL and NORMAL_OCT16P are defined for a point, the higher precision NORMAL will be
used.

SEMANTIC DATA TYPE DESCRIPTION REQUIRED

POSITION float32[3]
A 3-component array of numbers containing x,
y, and z Cartesian coordinates for the position
of the point.

Yes, unless
POSITION_
QUANTIZED is
defined.

POSITION_
QUANTIZED

uint16[3]
A 3-component array of numbers containing x,
y, and z in quantized Cartesian coordinates for
the position of the point.

Yes, unless POSITION
is defined.

RGBA uint8[4]
A 4-component array of values containing the
RGBA color of the point.

No.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 98

SEMANTIC DATA TYPE DESCRIPTION REQUIRED

RGB uint8[3]
A 3-component array of values containing the
RGB color of the point.

No.

RGB565 uint16
A lossy compressed color format that packs the
RGB color into 16 bits, providing 5 bits for red,
6 bits for green, and 5 bits for blue.

No.

NORMAL float32[3] A unit vector defining the normal of the point. No.

NORMAL_
OCT16P

uint8[2]
An oct-encoded unit vector with 16 bits of
precision defining the normal of the point.

No.

BATCH_ID
uint8, uint16
(default), or uint32

The batchId of the point that can be used to
retrieve metadata from the Batch Table.

No.

10.3.4.1.2. Global semantics

These semantics define global properties for all points.

SEMANTIC DATA TYPE DESCRIPTION REQUIRED

POINTS_LENGTH uint32
The number of points to render. The length of
each array value for a point semantic should be
equal to this.

Yes.

RTC_CENTER float32[3]
A 3-component array of numbers defining the
center position when point positions are defined
relative-to-center.

No.

QUANTIZED_
VOLUME_OFFSET

float32[3]
A 3-component array of numbers defining the
offset for the quantized volume.

No, unless POSITION_
QUANTIZED is defined.

QUANTIZED_
VOLUME_SCALE

float32[3]
A 3-component array of numbers defining the
scale for the quantized volume.

No, unless POSITION_
QUANTIZED is defined.

CONSTANT_RGBA uint8[4]
A 4-component array of values defining a
constant RGBA color for all points in the tile.

No.

BATCH_LENGTH uint32 The number of unique BATCH_ID values.
No, unless BATCH_ID is
defined.

Examples using these semantics can be found in the examples section below.

10.3.4.2. Point positions

POSITION defines the position for a point before any tileset transforms are applied.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 99

10.3.4.2.1. Coordinate reference system (CRS)

3D Tiles local coordinate systems use a right-handed 3-axis (x , y , z) Cartesian coordinate
system; that is, the cross product of x and y yields z. 3D Tiles defines the z axis as up for local
Cartesian coordinate systems (also see coordinate reference system).

10.3.4.2.2. RTC_CENTER

Positions may be defined relative-to-center for high-precision rendering, see Precisions,
Precisions. If defined, RTC_CENTER specifies the center position and all point positions are
treated as relative to this value.

10.3.4.2.3. Quantized positions

If POSITION is not defined, positions may be stored in POSITION_QUANTIZED, which defines point
positions relative to the quantized volume.
If neither POSITION nor POSITION_QUANTIZED is defined, the tile does not need to be rendered.

A quantized volume is defined by offset and scale to map quantized positions to a position in
local space. The following figure shows a quantized volume based on offset and scale:

OPEN GEOSPATIAL CONSORTIUM 18-053R2 100

http://help.agi.com/AGIComponents/html/BlogPrecisionsPrecisions.htm
http://help.agi.com/AGIComponents/html/BlogPrecisionsPrecisions.htm

Figure 30 — A quantized volume

offset is stored in the global semantic QUANTIZED_VOLUME_OFFSET, and scale is stored in the
global semantic QUANTIZED_VOLUME_SCALE.
If those global semantics are not defined, POSITION_QUANTIZED cannot be used.

Quantized positions can be mapped to local space using the following formula:

POSITION = POSITION_QUANTIZED * QUANTIZED_VOLUME_SCALE / 65535.0 + QUANTIZED_
VOLUME_OFFSET

10.3.4.3. Point colors

If more than one color semantic is defined, the precedence order is RGBA, RGB, RGB565, then
CONSTANT_RGBA. For example, if a tile’s Feature Table contains both RGBA and CONSTANT_RGBA
properties, the runtime would render with per-point colors using RGBA.

If no color semantics are defined, the runtime is free to color points using an application-specific
default color.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 101

In any case, a 3D Tiles Style may be used to change the final rendered color and other visual
properties at runtime.

10.3.4.4. Point normals

Per-point normals are an optional property that can help improve the visual quality of points by
enabling lighting, hidden surface removal, and other rendering techniques.
The normals will be transformed using the inverse transpose of the tileset transform.

10.3.4.4.1. Oct-encoded normal vectors

Oct-encoding is described in A Survey of Efficient Representations of Independent Unit Vectors.
Oct-encoded values are stored in unsigned, unnormalized range ([0, 255]) and then mapped to
a signed normalized range ([-1.0, 1.0]) at runtime.

An implementation for encoding and decoding these unit vectors can be found in Cesium’s
AttributeCompression module.

10.3.4.5. Batched points

Points that make up distinct features of the Point Cloud may be batched together using the
BATCH_ID semantic. For example, the points that make up a door in a house would all be
assigned the same BATCH_ID, whereas points that make up a window would be assigned a
different BATCH_ID.
This is useful for per-object picking and storing application-specific metadata for declarative
styling and application-specific use cases such as populating a UI or issuing a REST API request
on a per-object instead of per-point basis.

The BATCH_ID semantic may have a componentType of UNSIGNED_BYTE, UNSIGNED_SHORT, or
UNSIGNED_INT. When componentType is not present, UNSIGNED_SHORT is used.
The global semantic BATCH_LENGTH defines the number of unique batchId values, similar to the
batchLength field in the Batched 3D Model header.

10.3.4.6. Examples

This section is non-normative

These examples show how to generate JSON and binary buffers for the Feature Table.

10.3.4.6.1. Positions only

This minimal example has four points on the corners of a unit length square:

var featureTableJSON = {
 POINTS_LENGTH : 4,
 POSITION : {

OPEN GEOSPATIAL CONSORTIUM 18-053R2 102

http://jcgt.org/published/0003/02/01/
https://github.com/AnalyticalGraphicsInc/cesium/blob/master/Source/Core/AttributeCompression.js

 byteOffset : 0
 }
};

var featureTableBinary = new Buffer(new Float32Array([
 0.0,0.0,0.0,
 1.0,0.0,0.0,
 0.0,0.0,1.0,
 1.0,0.0,1.0
]).buffer);

10.3.4.6.2. Positions and colors

The following example has four points (red, green, blue, and yellow) above the globe. Their
positions are defined relative to center:

var featureTableJSON = {
 POINTS_LENGTH : 4,
 RTC_CENTER : [1215013.8,-4736316.7,4081608.4],
 POSITION : {
 byteOffset : 0
 },
 RGB : {
 byteOffset : 48
 }
};

var positionBinary = new Buffer(new Float32Array([
 0.0,0.0,0.0,
 1.0,0.0,0.0,
 0.0,0.0,1.0,
 1.0,0.0,1.0
]).buffer);

var colorBinary = new Buffer(new Uint8Array([
 255,0,0,
 0,255,0,
 0,0,255,
 255,255,0,
]).buffer);

var featureTableBinary = Buffer.concat([positionBinary, colorBinary]);

10.3.4.6.3. Quantized positions and oct-encoded normals

In this example, the four points will have normals pointing up [0.0, 1.0, 0.0] in oct-encoded
format, and they will be placed on the corners of a quantized volume that spans from -250.0 to
250.0 units in the x and z directions:

var featureTableJSON = {
 POINTS_LENGTH : 4,
 QUANTIZED_VOLUME_OFFSET : [-250.0,0.0,-250.0],
 QUANTIZED_VOLUME_SCALE : [500.0,0.0,500.0],
 POSITION_QUANTIZED : {
 byteOffset : 0
 },
 NORMAL_OCT16P : {

OPEN GEOSPATIAL CONSORTIUM 18-053R2 103

 byteOffset : 24
 }
};

var positionQuantizedBinary = new Buffer(new Uint16Array([
 0,0,0,
 65535,0,0,
 0,0,65535,
 65535,0,65535
]).buffer);

var normalOct16PBinary = new Buffer(new Uint8Array([
 128,255,
 128,255,
 128,255,
 128,255
]).buffer);

var featureTableBinary = Buffer.concat([positionQuantizedBinary,
normalOct16PBinary]);

10.3.4.6.4. Batched points

In this example, the first two points have a batchId of 0, and the next two points have a
batchId of 1. Note that the Batch Table only has two names:

var featureTableJSON = {
 POINTS_LENGTH : 4,
 BATCH_LENGTH : 2,
 POSITION : {
 byteOffset : 0
 },
 BATCH_ID : {
 byteOffset : 48,
 componentType : "UNSIGNED_BYTE"
 }
};

var positionBinary = new Buffer(new Float32Array([
 0.0,0.0,0.0,
 1.0,0.0,0.0,
 0.0,0.0,1.0,
 1.0,0.0,1.0
]).buffer);

var batchIdBinary = new Buffer(new Uint8Array([
 0,
 0,
 1,
 1
]).buffer);

var featureTableBinary = Buffer.concat([positionBinary, batchIdBinary]);

var batchTableJSON = {
 names : ['object1', 'object2']
};

OPEN GEOSPATIAL CONSORTIUM 18-053R2 104

10.3.4.6.5. Per-point properties

In this example, each of the 4 points will have metadata stored in the Batch Table JSON and
binary.

var featureTableJSON = {
 POINTS_LENGTH : 4,
 POSITION : {
 byteOffset : 0
 }
};

var featureTableBinary = new Buffer(new Float32Array([
 0.0,0.0,0.0,
 1.0,0.0,0.0,
 0.0,0.0,1.0,
 1.0,0.0,1.0
]).buffer);

var batchTableJSON = {
 names : ['point1','point2','point3','point4']
};

10.3.5. Batch Table

The Batch Table contains application-specific metadata, indexable by batchId, that can be used
for declarative styling and application-specific use cases such as populating a UI or issuing a
REST API request.

• If the BATCH_ID semantic is defined, the Batch Table stores metadata for each batchId,
and the length of the Batch Table arrays will equal BATCH_LENGTH.

• If the BATCH_ID semantic is not defined, then the Batch Table stores per-point metadata,
and the length of the Batch Table arrays will equal POINTS_LENGTH.

See the link: ../../../../../ggetz/Documents/_Batch_Table[Batch Table] reference for more
information.

10.3.6. File extension and MIME type

Point cloud tiles use the .pnts extension and application/octet-stream MIME type.

An explicit file extension is optional. Valid implementations may ignore it and identify a content’s
format by the magic field in its header.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 105

10.3.7. Implementation example

This section is non-normative

Code for reading the header can be found in PointCloud3DModelTileContent.js in the Cesium
implementation of 3D Tiles.

10.3.8. Property reference

10.3.8.1. Point Cloud Feature Table

A set of Point Cloud semantics that contains values defining the position and appearance
properties for points in a tile.

Properties

TYPE DESCRIPTION REQUIRED

extensions object Dictionary object with extension-specific objects. No

extras any Application-specific data. No

POSITION object
A BinaryBodyReference object defining the reference to a section
of the binary body where the property values are stored. See the
corresponding property semantic in Semantics.

No

POSITION_
QUANTIZED

object
A BinaryBodyReference object defining the reference to a section
of the binary body where the property values are stored. See the
corresponding property semantic in Semantics.

No

RGBA object
A BinaryBodyReference object defining the reference to a section
of the binary body where the property values are stored. See the
corresponding property semantic in Semantics.

No

RGB object
A BinaryBodyReference object defining the reference to a section
of the binary body where the property values are stored. See the
corresponding property semantic in Semantics.

No

RGB565 object
A BinaryBodyReference object defining the reference to a section
of the binary body where the property values are stored. See the
corresponding property semantic in Semantics.

No

NORMAL object
A BinaryBodyReference object defining the reference to a section
of the binary body where the property values are stored. See the
corresponding property semantic in Semantics.

No

OPEN GEOSPATIAL CONSORTIUM 18-053R2 106

https://github.com/AnalyticalGraphicsInc/cesium/blob/master/Source/Scene/PointCloud3DTileContent.js

TYPE DESCRIPTION REQUIRED

NORMAL_
OCT16P

object
A BinaryBodyReference object defining the reference to a section
of the binary body where the property values are stored. See the
corresponding property semantic in Semantics.

No

BATCH_ID object
A BinaryBodyReference object defining the reference to a section
of the binary body where the property values are stored. See the
corresponding property semantic in Semantics.

No

POINTS_LENGTH
object,
number[1],
number

A GlobalPropertyScalar object defining a numeric property for all
points. See the corresponding property semantic in Semantics.

Yes

RTC_CENTER
object,
number[3]

A GlobalPropertyCartesian3 object defining a 3-component
numeric property for all points. See the corresponding property
semantic in Semantics.

No

QUANTIZED_
VOLUME_OFFSET

object,
number[3]

A GlobalPropertyCartesian3 object defining a 3-component
numeric property for all points. See the corresponding property
semantic in Semantics.

No

QUANTIZED_
VOLUME_SCALE

object,
number[3]

A GlobalPropertyCartesian3 object defining a 3-component
numeric property for all points. See the corresponding property
semantic in Semantics.

No

CONSTANT_
RGBA

object,
number[4]

A GlobalPropertyCartesian4 object defining a 4-component
numeric property for all points. See the corresponding property
semantic in Semantics.

No

BATCH_LENGTH
object,
number[1],
number

A GlobalPropertyScalar object defining a numeric property for all
points. See the corresponding property semantic in Semantics.

No

Additional properties are allowed.

• Type of each property: Property

10.3.8.1.1. PointCloudFeatureTable.extensions

Dictionary object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

OPEN GEOSPATIAL CONSORTIUM 18-053R2 107

10.3.8.1.2. PointCloudFeatureTable.extras

Application-specific data.

• Type: any

• Required: No

10.3.8.1.3. PointCloudFeatureTable.POSITION

A BinaryBodyReference object defining the reference to a section of the binary body where the
property values are stored. See the corresponding property semantic in Semantics.

• Type: object

• Required: No

10.3.8.1.4. PointCloudFeatureTable.POSITION_QUANTIZED

A BinaryBodyReference object defining the reference to a section of the binary body where the
property values are stored. See the corresponding property semantic in Semantics.

• Type: object

• Required: No

10.3.8.1.5. PointCloudFeatureTable.RGBA

A BinaryBodyReference object defining the reference to a section of the binary body where the
property values are stored. See the corresponding property semantic in Semantics.

• Type: object

• Required: No

10.3.8.1.6. PointCloudFeatureTable.RGB

A BinaryBodyReference object defining the reference to a section of the binary body where the
property values are stored. See the corresponding property semantic in Semantics.

• Type: object

OPEN GEOSPATIAL CONSORTIUM 18-053R2 108

• Required: No

10.3.8.1.7. PointCloudFeatureTable.RGB565

A BinaryBodyReference object defining the reference to a section of the binary body where the
property values are stored. See the corresponding property semantic in Semantics.

• Type: object

• Required: No

10.3.8.1.8. PointCloudFeatureTable.NORMAL

A BinaryBodyReference object defining the reference to a section of the binary body where the
property values are stored. See the corresponding property semantic in Semantics.

• Type: object

• Required: No

10.3.8.1.9. PointCloudFeatureTable.NORMAL_OCT16P

A BinaryBodyReference object defining the reference to a section of the binary body where the
property values are stored. See the corresponding property semantic in Semantics.

• Type: object

• Required: No

10.3.8.1.10. PointCloudFeatureTable.BATCH_ID

A BinaryBodyReference object defining the reference to a section of the binary body where the
property values are stored. See the corresponding property semantic in Semantics.

• Type: object

• Required: No

10.3.8.1.11. PointCloudFeatureTable.POINTS_LENGTH

A GlobalPropertyScalar object defining a numeric property for all points. See the corresponding
property semantic in Semantics.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 109

• Type: object, number[1], number

• Required: Yes

10.3.8.1.12. PointCloudFeatureTable.RTC_CENTER

A GlobalPropertyCartesian3 object defining a 3-component numeric property for all points. See
the corresponding property semantic in Semantics.

• Type: object, number[3]

• Required: No

10.3.8.1.13. PointCloudFeatureTable.QUANTIZED_VOLUME_OFFSET

A GlobalPropertyCartesian3 object defining a 3-component numeric property for all points. See
the corresponding property semantic in Semantics.

• Type: object, number[3]

• Required: No

10.3.8.1.14. PointCloudFeatureTable.QUANTIZED_VOLUME_SCALE

A GlobalPropertyCartesian3 object defining a 3-component numeric property for all points. See
the corresponding property semantic in Semantics.

• Type: object, number[3]

• Required: No

10.3.8.1.15. PointCloudFeatureTable.CONSTANT_RGBA

A GlobalPropertyCartesian4 object defining a 4-component numeric property for all points. See
the corresponding property semantic in Semantics.

• Type: object, number[4]

• Required: No

OPEN GEOSPATIAL CONSORTIUM 18-053R2 110

10.3.8.1.16. PointCloudFeatureTable.BATCH_LENGTH

A GlobalPropertyScalar object defining a numeric property for all points. See the corresponding
property semantic in Semantics.

• Type: object, number[1], number

• Required: No

10.3.8.2. BinaryBodyReference

An object defining the reference to a section of the binary body of the features table where the
property values are stored if not defined directly in the JSON.

Properties

Type Description Required

byteOffset number The offset into the buffer in bytes. Yes

Additional properties are allowed.

10.3.8.2.1. BinaryBodyReference.byteOffset

The offset into the buffer in bytes.

• Type: number

• Required: Yes

• Minimum: >= 0

10.3.8.3. GlobalPropertyCartesian3

An object defining a global 3-component numeric property values for all features.

10.3.8.4. GlobalPropertyCartesian4

An object defining a global 4-component numeric property values for all features.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 111

10.3.8.5. GlobalPropertyScalar

An object defining a global numeric property values for all features.

10.3.8.6. Property

A user-defined property which specifies per-feature application-specific metadata in a tile.
Values either can be defined directly in the JSON as an array, or can refer to sections in the
binary body with a BinaryBodyReference object.

10.4. Composite

10.4.1. Overview

The Composite tile format enables concatenating tiles of different formats into one tile.

3D Tiles and the Composite tile allow flexibility for streaming heterogeneous datasets. For
example, buildings and trees could be stored either in two separate Batched 3D Model and
Instanced 3D Model tiles or, using a Composite tile, the tiles can be combined.

Supporting heterogeneous datasets with both inter-tile (separate tiles of different formats that
are in the same tileset) and intra-tile (different tile formats that are in the same Composite tile)
options allows conversion tools to make trade-offs between number of requests, optimal type-
specific subdivision, and how visible/hidden layers are streamed.

A Composite tile is a binary blob in little endian.

10.4.2. Layout

Composite layout (dashes indicate optional fields):

Figure 31 — Composite layout

OPEN GEOSPATIAL CONSORTIUM 18-053R2 112

10.4.2.1. Padding

A tile’s byteLength must be aligned to an 8-byte boundary. All tiles contained in a composite tile
must also be aligned to an 8-byte boundary.

10.4.3. Header

The 16-byte header section contains the following fields:

FIELD NAME DATA TYPE DESCRIPTION

magic
4-byte ANSI
string

"cmpt". This can be used to identify the content as a Composite tile.

version uint32 The version of the Composite format. It is currently 1.

byteLength uint32
The length of the entire Composite tile, including this header and each inner
tile, in bytes.

tilesLength uint32 The number of tiles in the Composite.

10.4.4. Inner tiles

Inner tile fields are stored tightly packed immediately following the header section. The
following information describes general characteristics of all tile formats that a Composite tile
reader might exploit to find the boundaries of the inner tiles:

• Each tile starts with a 4-byte ANSI string, magic, that can be used to determine the tile
format for further parsing. See tile format specifications for a list of possible formats.
Composite tiles can contain Composite tiles.

• Each tile’s header contains a uint32 byteLength, which defines the length of the inner
tile, including its header, in bytes. This can be used to traverse the inner tiles.

• For any tile format’s version 1, the first 12 bytes of all tiles is the following fields:

FIELD NAME DATA TYPE DESCRIPTION

magic 4-byte ANSI string Indicates the tile format

version uint32 1

OPEN GEOSPATIAL CONSORTIUM 18-053R2 113

FIELD NAME DATA TYPE DESCRIPTION

byteLength uint32 Length, in bytes, of the entire tile.

Refer to the spec for each tile format for more details.

10.4.5. File extension and MIME type

Composite tiles use the .cmpt extension and application/octet-stream MIME type.

An explicit file extension is optional. Valid implementations may ignore it and identify a content’s
format by the magic field in its header.

10.4.6. Implementation examples

This section is non-normative

• Python packcmpt tool in gltf2glb toolset contains code for combining one or more Batched
3D Model or Instanced 3D Model tiles into a single Composite tile file.

• Code for reading the header can be found in Composite3DTileContent.js in the Cesium
implementation of 3D Tiles.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 114

https://github.com/Geopipe/gltf2glb
https://github.com/AnalyticalGraphicsInc/cesium/blob/master/Source/Scene/Composite3DTileContent.js

11

DECLARATIVE STYLING
SPECIFICATION

OPEN GEOSPATIAL CONSORTIUM 18-053R2 115

11 DECLARATIVE STYLING SPECIFICATION

11.1. Overview

3D Tiles styles provide concise declarative styling of tileset features. A style defines expressions
to evaluate the display of a feature, for example color (RGB and translucency) and show
properties, often based on the feature’s properties stored in the tile’s Batch Table.

A style may be applied to a tile that doesn’t contain features, in which case the tile is treated as
an implicit single feature without properties.

While a style may be created for and reference properties of a tileset, a style is independent of a
tileset, such that any style can be applied to any tileset.

Styles are defined with JSON and expressions written in a small subset of JavaScript augmented
for styling. Additionally, the styling language provides a set of built-in functions to support
common math operations.

The following example assigns a color based on building height.

{
 "show" : "${Area} > 0",
 "color":{
 "conditions":[
 ["${Height} < 60","color('#13293D')"],
 ["${Height} < 120","color('#1B98E0')"],
 ["true","color('#E8F1F2', 0.5)"]
]
 }
}

11.2. Concepts

11.2.1. Styling features

Visual properties available for styling features are the show property, the assigned expression of
which will evaluate to a boolean that determines if the feature is visible, and the color property,
the assigned expression of which will evaluate to a Color object (RGB and translucency) which
determines the displayed color of a feature.

The following style assigns the default show and color properties to each feature:

{

OPEN GEOSPATIAL CONSORTIUM 18-053R2 116

 “show” : “true”,
 “color” : “color(‘#ffffff’)”
}

Instead of showing all features, show can be an expression dependent on a feature’s properties,
for example, the following expression will show only features in the 19341 zip code:

{
 “show” : “${ZipCode} === ‘19341’”
}

show can also be used for more complex queries; for example, here a compound condition and
regular expression are used to show only features whose county starts with 'Chest' and whose
year built is greater than or equal to 1970:

{
 “show” : “(regExp(‘^Chest’).test(${County})) && (${YearBuilt} >= 1970)”
}

Colors can also be defined by expressions dependent on a feature’s properties. For example,
the following expression colors features with a temperature above 90 as red and the others as
white:

{
 “color” : “(${Temperature} > 90) ? color(‘red’) : color(‘white’)”
}

The color’s alpha component defines the feature’s opacity. For example, the following sets the
feature’s RGB color components from the feature’s properties and makes features with volume
greater than 100 transparent:

{
 “color” : “rgba(${red}, ${green}, ${blue}, (${volume} > 100 ? 0.5 : 1.0))”
}

11.2.2. Conditions

In addition to a string containing an expression, color and show can be an array defining a series
of conditions (similar to if…else statements). Conditions can, for example, be used to make
color maps and color ramps with any type of inclusive/exclusive intervals.

For example, the following expression maps an ID property to colors. Conditions are evaluated
in order, so if ${id} is not ‘1’ or ‘2’, the “true” condition returns white. If no conditions are
met, the color of the feature will be undefined:

{
 “color” : {
 “conditions” : [
 [“${id} === ‘1’”,”color(‘#FF0000’)”],
 [“${id} === ‘2’”,”color(‘#00FF00’)”],
 [“true”,”color(‘#FFFFFF’)”]
]
 }
}

The next example shows how to use conditions to create a color ramp using intervals with an
inclusive lower bound and exclusive upper bound:

OPEN GEOSPATIAL CONSORTIUM 18-053R2 117

“color” : {
 “conditions” : [
 [“(${Height} >= 1.0) && (${Height} < 10.0)”,”color(‘#FF00FF’)”],
 [“(${Height} >= 10.0) && (${Height} < 30.0)”,”color(‘#FF0000’)”],
 [“(${Height} >= 30.0) && (${Height} < 50.0)”,”color(‘#FFFF00’)”],
 [“(${Height} >= 50.0) && (${Height} < 70.0)”,”color(‘#00FF00’)”],
 [“(${Height} >= 70.0) && (${Height} < 100.0)”,”color(‘#00FFFF’)”],
 [“(${Height} >= 100.0)”,”color(‘#0000FF’)”]
]
}

Since conditions are evaluated in order, the above can be written more concisely as the
following:

“color”: {
 “conditions”: [
 [“(${Height} >= 100.0)”,”color(‘#0000FF’)”],
 [“(${Height} >= 70.0)”,”color(‘#00FFFF’)”],
 [“(${Height} >= 50.0)”,”color(‘#00FF00’)”],
 [“(${Height} >= 30.0)”,”color(‘#FFFF00’)”],
 [“(${Height} >= 10.0)”,”color(‘#FF0000’)”],
 [“(${Height} >= 1.0)”,”color(‘#FF00FF’)”]
]
}

11.2.3. Defining variables

Commonly used expressions may be stored in a defines object with a variable name as a key.
If a variable references the name of a defined expression, it is replaced with the result of the
referenced evaluated expression:

{
 “defines” : {
 “NewHeight” : “clamp((${Height}   —   0.5) / 2.0, 1.0, 255.0)”,
 “HeightColor” : “rgb(${Height}, ${Height}, ${Height})”
 },
 “color” : {
 “conditions” : [
 [“(${NewHeight} >= 100.0)”,”color(‘#0000FF’) * ${HeightColor}”],
 [“(${NewHeight} >= 50.0)”,”color(‘#00FF00’) * ${HeightColor}”],
 [“(${NewHeight} >= 1.0)”,”color(‘#FF0000’) * ${HeightColor}”]
]
 },
 “show” : “${NewHeight} < 200.0”
}

A define expression may not reference other defines; however, it may reference feature
properties with the same name. In the style below a feature of height 150 gets the color red:

{
 “defines” : {
 “Height” : “${Height}/2.0}”,
 },
 “color” : {
 “conditions” : [
 [“(${Height} >= 100.0)”,”color(‘#0000FF’)”],
 [“(${Height} >= 1.0)”,”color(‘#FF0000’)”]
]
 }

OPEN GEOSPATIAL CONSORTIUM 18-053R2 118

}

11.2.4. Meta property

Non-visual properties of a feature can be defined using the meta property. For example, the
following sets a description meta property to a string containing the feature name:

{
 “meta” : {
 “description” : “‘Hello, ${featureName}.’”
 }
}

A meta property expression can evaluate to any type. For example:

{
 “meta” : {
 “featureColor” : “rgb(${red}, ${green}, ${blue})”,
 “featureVolume” : “${height} * ${width} * ${depth}”
 }
}

11.3. Expressions

The language for expressions is a small subset of JavaScript (EMCAScript 5), plus native vector
and regular expression types and access to tileset feature properties in the form of readonly
variables.

Implementation Note: Cesium uses the jsep JavaScript expression parser library to parse style
expressions into an abstract syntax tree (AST).

11.3.1. Semantics

Dot notation is used to access properties by name, e.g., building.name.

Bracket notation ([]) is also used to access properties, e.g., building[‘name’], or arrays, e.g.,
temperatures[1].

Functions are called with parenthesis (()) and comma-separated arguments, e.g., (isNaN(0.
0), color('cyan', 0.5)).

11.3.2. Operators

The following operators are supported with the same semantics and precedence as JavaScript.

• Unary: +, -, !

OPEN GEOSPATIAL CONSORTIUM 18-053R2 119

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://jsep.from.so/
https://en.wikipedia.org/wiki/Abstract_syntax_tree

• Not supported: ~

• Binary: ||, &&, ===, !==, <, >, ⇐, >=, +, -, *, /, %, =~, !~

• Not supported: |, ^, &, <<, >>, and >>>

• Ternary: ? :

(and) are also supported for grouping expressions for clarity and precedence.

Logical || and && implement short-circuiting; true || expression does not evaluate the right
expression, and false && expression does not evaluate the right expression.

Similarly, true ? leftExpression : rightExpression only executes the left expression, and
false ? leftExpression : rightExpression only executes the right expression.

11.3.3. Types

The following types are supported:

• Boolean

• Null

• Undefined

• Number

• String

• Array

• vec2

• vec3

• vec4

• RegExp

All of the types except vec2, vec3, vec4, and RegExp have the same syntax and runtime
behavior as JavaScript. vec2, vec3, and vec4 are derived from GLSL vectors and behave
similarly to JavaScript Object (see the Vector section). Colors derive from CSS3 Colors and are
implemented as vec4. RegExp is derived from JavaScript and described in the RegExp section.

Example expressions for different types include the following:

• true, false

• null

OPEN GEOSPATIAL CONSORTIUM 18-053R2 120

https://www.w3.org/TR/css3-color/

• undefined

• 1.0, NaN, Infinity

• 'Cesium', "Cesium"

• [0, 1, 2]

• vec2(1.0, 2.0)

• vec3(1.0, 2.0, 3.0)

• vec4(1.0, 2.0, 3.0, 4.0)

• color('#00FFFF')

• regExp('^Chest'))

11.3.3.1. Number

As in JavaScript, numbers can be NaN or Infinity. The following test functions are supported:

• isNaN(testValue : Number) : Boolean

• isFinite(testValue : Number) : Boolean

11.3.3.2. Vector

The styling language includes 2, 3, and 4 component floating-point vector types: vec2, vec3, and
vec4. Vector constructors share the same rules as GLSL:

11.3.3.2.1. vec2

• vec2(xy : Number) — initialize each component with the number

• vec2(x : Number, y : Number) — initialize with two numbers

• vec2(xy : vec2) — initialize with another vec2

• vec2(xyz : vec3) — drops the third component of a vec3

• vec2(xyzw : vec4) — drops the third and fourth component of a vec4

11.3.3.2.2. vec3

• vec3(xyz : Number) — initialize each component with the number

OPEN GEOSPATIAL CONSORTIUM 18-053R2 121

• vec3(x : Number, y : Number, z : Number) — initialize with three numbers

• vec3(xyz : vec3) — initialize with another vec3

• vec3(xyzw : vec4) — drops the fourth component of a vec4

• vec3(xy : vec2, z : Number) — initialize with a vec2 and number

• vec3(x : Number, yz : vec2) — initialize with a vec2 and number

11.3.3.2.3. vec4

• vec4(xyzw : Number) — initialize each component with the number

• vec4(x : Number, y : Number, z : Number, w : Number) — initialize with four
numbers

• vec4(xyzw : vec4) — initialize with another vec4

• vec4(xy : vec2, z : Number, w : Number) — initialize with a vec2 and two numbers

• vec4(x : Number, yz : vec2, w : Number) — initialize with a vec2 and two numbers

• vec4(x : Number, y : Number, zw : vec2) — initialize with a vec2 and two numbers

• vec4(xyz : vec3, w : Number) — initialize with a vec3 and number

• vec4(x : Number, yzw : vec3) — initialize with a vec3 and number

11.3.3.2.4. Vector usage

vec2 components may be accessed with

• .x, .y

• .r, .g

• [0], [1]

vec3 components may be accessed with

• .x, .y, .z

• .r, .g, .b

• [0], [1], [2]

vec4 components may be accessed with

OPEN GEOSPATIAL CONSORTIUM 18-053R2 122

• .x, .y, .z, .w

• .r, .g, .b, .a

• [0], [1], [2], [3]

Unlike GLSL, the styling language does not support swizzling. For example, vec3(1.0).xy is not
supported.

Vectors support the following unary operators: -, +.

Vectors support the following binary operators by performing component-wise operations: ==
= , !== , +, -, *, /, and %. For example vec4(1.0) === vec4(1.0) is true since the x , y , z, and w
components are equal. Operators are essentially overloaded for vec2, vec3, and vec4.

vec2, vec3, and vec4 have a toString function for explicit (and implicit) conversion to strings in
the format ‘(x, y)’, ‘(x, y, z)’, and ‘(x, y, z, w)’.

• toString() : String

vec2, vec3, and vec4 do not expose any other functions or a prototype object.

11.3.3.3. Color

Colors are implemented as vec4 and are created with one of the following functions:

• color()

• color(keyword : String, [alpha : Number])

• color(6-digit-hex : String, [alpha : Number])

• color(3-digit-hex : String, [alpha : Number])

• rgb(red : Number, green : Number, blue : Number)

• rgba(red : Number, green : Number, blue : Number, alpha : Number)

• hsl(hue : Number, saturation : Number, lightness : Number)

• hsla(hue : Number, saturation : Number, lightness : Number, alpha :
Number)

Calling color() with no arguments is the same as calling color(‘#FFFFFF’).

Colors defined by a case-insensitive keyword (e.g., ‘cyan’) or hex rgb are passed as strings to
the color function. For example:

• color('cyan')

OPEN GEOSPATIAL CONSORTIUM 18-053R2 123

• color('#00FFFF')

• color('#0FF')

These color functions have an optional second argument that is an alpha component to define
opacity, where 0.0 is fully transparent and 1.0 is fully opaque. For example:

• color('cyan', 0.5)

Colors defined with decimal RGB or HSL are created with rgb and hsl functions, respectively,
just as in CSS (but with percentage ranges from 0.0 to 1.0 for 0% to 100%, respectively). For
example:

• rgb(100, 255, 190)

• hsl(1.0, 0.6, 0.7)

The range for rgb components is 0 to 255, inclusive. For hsl, the range for hue, saturation, and
lightness is 0.0 to 1.0, inclusive.

Colors defined with rgba or hsla have a fourth argument that is an alpha component to define
opacity, where 0.0 is fully transparent and 1.0 is fully opaque. For example:

• rgba(100, 255, 190, 0.25)

• hsla(1.0, 0.6, 0.7, 0.75)

Colors are equivalent to the vec4 type and share the same functions, operators, and component
accessors. Color components are stored in the range 0.0 to 1.0.

For example:

• color(‘red’).x, color(‘red’).r, and color(‘red’)[0] all evaluate to 1.0.

• color(‘red’).toString() evaluates to (1.0, 0.0, 0.0, 1.0)

• color(‘red’) * vec4(0.5) is equivalent to vec4(0.5, 0.0, 0.0, 0.5)

11.3.3.4. RegExp

Regular expressions are created with the following functions, which behave like the JavaScript
RegExp constructor:

• regExp()

• regExp(pattern : String, [flags : String])

OPEN GEOSPATIAL CONSORTIUM 18-053R2 124

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp

Calling regExp() with no arguments is the same as calling regExp(‘(?:)’).

If specified, flags can have any combination of the following values:

• g — global match

• i — ignore case

• m — multiline

• u — unicode

• y — sticky

Regular expressions support these functions:

• test(string : String) : Boolean — Tests the specified string for a match.

• exec(string : String) : String — Executes a search for a match in the specified
string. If the search succeeds, it returns the first instance of a captured String. If the
search fails, it returns null.

For example:

{
 “Name” : “Building 1”
}

regExp(‘a’).test(‘abc’) === true
regExp(‘a(.)’, ‘i’).exec(‘Abc’) === ‘b’
regExp(‘Building\s(\d)’).exec(${Name}) === ‘1’

Regular expressions have a toString function for explicit (and implicit) conversion to strings in
the format ‘pattern’:

• toString() : String

Regular expressions do not expose any other functions or a prototype object.

The operators =~ and !~ are overloaded for regular expressions. The =~ operator matches the
behavior of the test function, and tests the specified string for a match. It returns true if one is
found, and false if not found. The !~ operator is the inverse of the =~ operator. It returns true
if no matches are found, and false if a match is found. Both operators are commutative.

For example, the following expressions all evaluate to true:

regExp(‘a’) =~ ‘abc’
‘abc’ =~ regExp(‘a’)

regExp(‘a’) !~ ‘bcd’
‘bcd’ !~ regExp(‘a’)

OPEN GEOSPATIAL CONSORTIUM 18-053R2 125

11.3.4. Operator rules

• Unary operators + and - operate only on number and vector expressions.

• Unary operator ! operates only on boolean expressions.

• Binary operators <, ⇐, >, and >= operate only on number expressions.

• Binary operators || and && operate only on boolean expressions.

• Binary operator + operates on the following expressions:

• Number expressions

• Vector expressions of the same type

• If at least one expressions is a string, the other expression is converted to a string
following String Conversions, and the operation returns a concatenated string, e.g.
“name” + 10 evaluates to “name10”

• Binary operator - operates on the following expressions:

• Number expressions

• Vector expressions of the same type

• Binary operator * operates on the following expressions:

• Number expressions

• Vector expressions of the same type

• Mix of number expression and vector expression, e.g. 3 * vec3(1.0) and vec2(1.0)
* 3

• Binary operator / operates on the following expressions:

• Number expressions

• Vector expressions of the same type

• Vector expression followed by number expression, e.g. vec3(1.0) / 3

• Binary operator % operates on the following expressions:

• Number expressions

• Vector expressions of the same type

OPEN GEOSPATIAL CONSORTIUM 18-053R2 126

• Binary equality operators === and !== operate on any expressions. The operation returns
false if the expression types do not match.

• Binary regExp operators =~ and !~ require one argument to be a string expression and the
other to be a RegExp expression.

• Ternary operator ? : conditional argument must be a boolean expression.

11.3.5. Type conversions

Explicit conversions between primitive types are handled with Boolean, Number, and String
functions.

• Boolean(value : Any) : Boolean

• Number(value : Any) : Number

• String(value : Any) : String

For example:

Boolean(1) === true
Number('1') === 1
String(1) === '1'

Boolean and Number follow JavaScript conventions. String follows String Conversions.

These are essentially casts, not constructor functions.

The styling language does not allow for implicit type conversions, unless stated above.
Expressions like vec3(1.0) === vec4(1.0) and “5” < 6 are not valid.

11.3.6. String conversions

vec2, vec3, vec4, and RegExp expressions are converted to strings using their toString
methods. All other types follow JavaScript conventions.

• true - "true"

• false - "false"

• null - "null"

• undefined - "undefined"

• 5.0 - "5"

• NaN - "NaN"

• Infinity - "Infinity"

OPEN GEOSPATIAL CONSORTIUM 18-053R2 127

• "name" - "name"

• [0, 1, 2] - "[0, 1, 2]"

• vec2(1, 2) - "(1, 2)"

• vec3(1, 2, 3) - "(1, 2, 3)"

• vec4(1, 2, 3, 4) - "(1, 2, 3, 4)"

• RegExp('a') - "/a/"

11.3.7. Constants

The following constants are supported by the styling language:

11.3.7.1. PI

The mathematical constant PI, which represents a circle’s circumference divided by its diameter,
approximately 3.14159.

{
 "show" : "cos(${Angle} + Math.PI) < 0"
}

11.3.7.2. E

Euler’s constant and the base of the natural logarithm, approximately 2.71828.

{
 "color" : "color() * pow(Math.E / 2.0, ${Temperature})"
}

11.3.8. Variables

Variables are used to retrieve the property values of individual features in a tileset. Variables
are identified using the ES 6 (ECMAScript 2015) template literal syntax, i.e., ${feature.
identifier} or ${feature[‘identifier’]}, where the identifier is the case-sensitive property
name. feature is implicit and can be omitted in most cases.

Variables can be used anywhere a valid expression is accepted, except inside other variable
identifiers. For example, the following is not allowed:

${foo[${bar}]}

If a feature does not have a property with the specified name, the variable evaluates to
undefined. Note that the property may also be null if null was explicitly stored for a property.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 128

http://www.ecma-international.org/ecma-262/6.0/

Variables may be any of the supported native JavaScript types:

• Boolean

• Null

• Undefined

• Number

• String

• Array

For example:

{
 “enabled” : true,
 “description” : null,
 “order” : 1,
 “name” : “Feature name”
}

${enabled} === true
${description} === null
${order} === 1
${name} === ‘Feature name’

Additionally, variables originating from vector properties stored in the Batch Table binary are
treated as vector types:

componentType VARIABLE TYPE

"VEC2" vec2

"VEC3" vec3

"VEC4" vec4

Variables can be used to construct colors or vectors. For example:

rgba(${red}, ${green}, ${blue}, ${alpha})
vec4(${temperature})

Dot or bracket notation is used to access feature subproperties. For example:

{
 “address” : {
 “street” : “Example street”,
 “city” : “Example city”
 }
}

${address.street} === ̀Example street`
${address[‘street’]} === ̀Example street`

OPEN GEOSPATIAL CONSORTIUM 18-053R2 129

${address.city} === ̀Example city`
${address[‘city’]} === ̀Example city`

Bracket notation supports only string literals.

Top-level properties can be accessed with bracket notation by explicitly using the feature
keyword. For example:

{
 “address.street” : “Maple Street”,
 “address” : {
 “street” : “Oak Street”
}
}

${address.street} === ̀Oak Street`
${feature.address.street} === ̀Oak Street`
${feature[‘address’].street} === ̀Oak Street`
${feature[‘address.street’]} === ̀Maple Street`

To access a feature named feature, use the variable ${feature}. This is equivalent to accessing
${feature.feature}

{
 “feature” : “building”
}

${feature} === ̀building`
${feature.feature} === ̀building`

Variables can also be substituted inside strings defined with backticks, for example:

{
 “order” : 1,
 “name” : “Feature name”
}

Name is ${name}, order is ${order}

Bracket notation is used to access feature subproperties or arrays. For example:

{
 “temperatures” : {
 “scale” : “fahrenheit”,
 “values” : [70,80,90]
}
}

${temperatures[‘scale’]} === ‘fahrenheit’
${temperatures.values[0]} === 70
${temperatures[‘values’][0]} === 70 // Same as (temperatures[values])[0] and
temperatures.values[0]

11.3.9. Built-in functions

The following built-in functions are supported by the styling language. Many of the built-in
functions take either scalars or vectors as arguments. For vector arguments the function is
applied component-wise and the resulting vector is returned.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 130

11.3.9.1. abs

abs(x : Number) : Number
abs(x : vec2) : vec2
abs(x : vec3) : vec3
abs(x : vec4) : vec4

Returns the absolute value of x.

{
 "show" : "abs(${temperature}) > 20.0"
}

11.3.9.2. sqrt

sqrt(x : Number) : Number
sqrt(x : vec2) : vec2
sqrt(x : vec3) : vec3
sqrt(x : vec4) : vec4

Returns the square root of x when x >= 0. Returns NaN when x < 0.

{
 "color" : {
 "conditions" : [
 ["${temperature} >= 0.5", "color('#00FFFF')"],
 ["${temperature} >= 0.0", "color('#FF00FF')"]
]
 }
}

11.3.9.3. cos

cos(angle : Number) : Number
cos(angle : vec2) : vec2
cos(angle : vec3) : vec3
cos(angle : vec4) : vec4

Returns the cosine of angle in radians.

{
 "show" : "cos(${Angle}) > 0.0"
}

11.3.9.4. sin

sin(angle : Number) : Number
sin(angle : vec2) : vec2
sin(angle : vec3) : vec3

OPEN GEOSPATIAL CONSORTIUM 18-053R2 131

sin(angle : vec4) : vec4

Returns the sine of angle in radians.

{
 "show" : "sin(${Angle}) > 0.0"
}

11.3.9.5. tan

tan(angle : Number) : Number
tan(angle : vec2) : vec2
tan(angle : vec3) : vec3
tan(angle : vec4) : vec4

Returns the tangent of angle in radians.

{
 "show" : "tan(${Angle}) > 0.0"
}

11.3.9.6. acos

acos(angle : Number) : Number
acos(angle : vec2) : vec2
acos(angle : vec3) : vec3
acos(angle : vec4) : vec4

Returns the arccosine of angle in radians.

{
 "show" : "acos(${Angle}) > 0.0"
}

11.3.9.7. asin

asin(angle : Number) : Number
asin(angle : vec2) : vec2
asin(angle : vec3) : vec3
asin(angle : vec4) : vec4

Returns the arcsine of angle in radians.

{
 "show" : "asin(${Angle}) > 0.0"
}

11.3.9.8. atan

atan(angle : Number) : Number

OPEN GEOSPATIAL CONSORTIUM 18-053R2 132

atan(angle : vec2) : vec2
atan(angle : vec3) : vec3
atan(angle : vec4) : vec4

Returns the arctangent of angle in radians.

{
 "show" : "atan(${Angle}) > 0.0"
}

11.3.9.9. atan2

atan2(y : Number, x : Number) : Number
atan2(y : vec2, x : vec2) : vec2
atan2(y : vec3, x : vec3) : vec3
atan2(y : vec4, x : vec4) : vec4

Returns the arctangent of the quotient of y and x.

{
 "show" : "atan2(${GridY}, ${GridX}) > 0.0"
}

11.3.9.10. radians

radians(angle : Number) : Number
radians(angle : vec2) : vec2
radians(angle : vec3) : vec3
radians(angle : vec4) : vec4

Converts angle from degrees to radians.

{
 "show" : "radians(${Angle}) > 0.5"
}

11.3.9.11. degrees

degrees(angle : Number) : Number
degrees(angle : vec2) : vec2
degrees(angle : vec3) : vec3
degrees(angle : vec4) : vec4

Converts angle from radians to degrees.

{
 "show" : "degrees(${Angle}) > 45.0"
}

OPEN GEOSPATIAL CONSORTIUM 18-053R2 133

11.3.9.12. sign

sign(x : Number) : Number
sign(x : vec2) : vec2
sign(x : vec3) : vec3
sign(x : vec4) : vec4

Returns 1.0 when x is positive, 0.0 when x is zero, and -1.0 when x is negative.

{
 "show" : "sign(${Temperature}) * sign(${Velocity}) === 1.0"
}

11.3.9.13. floor

floor(x : Number) : Number
floor(x : vec2) : vec2
floor(x : vec3) : vec3
floor(x : vec4) : vec4

Returns the nearest integer less than or equal to x.

{
 "show" : "floor(${Position}) === 0"
}

11.3.9.14. ceil

ceil(x : Number) : Number
ceil(x : vec2) : vec2
ceil(x : vec3) : vec3
ceil(x : vec4) : vec4

Returns the nearest integer greater than or equal to x.

{
 "show" : "ceil(${Position}) === 1"
}

11.3.9.15. round

round(x : Number) : Number
round(x : vec2) : vec2
round(x : vec3) : vec3
round(x : vec4) : vec4

OPEN GEOSPATIAL CONSORTIUM 18-053R2 134

Returns the nearest integer to x. A number with a fraction of 0.5 will round in an
implementation-defined direction.

{
 "show" : "round(${Position}) === 1"
}

11.3.9.16. exp

exp(x : Number) : Number
exp(x : vec2) : vec2
exp(x : vec3) : vec3
exp(x : vec4) : vec4

Returns e to the power of x, where e is Euler’s constant, approximately 2.71828.

{
 "show" : "exp(${Density}) > 1.0"
}

11.3.9.17. log

log(x : Number) : Number
log(x : vec2) : vec2
log(x : vec3) : vec3
log(x : vec4) : vec4

Returns the natural logarithm (base e) of x.

{
 "show" : "log(${Density}) > 1.0"
}

11.3.9.18. exp2

exp2(x : Number) : Number
exp2(x : vec2) : vec2
exp2(x : vec3) : vec3
exp2(x : vec4) : vec4

Returns 2 to the power of x.

{
 "show" : "exp2(${Density}) > 1.0"
}

11.3.9.19. log2

log2(x : Number) : Number
log2(x : vec2) : vec2

OPEN GEOSPATIAL CONSORTIUM 18-053R2 135

log2(x : vec3) : vec3
log2(x : vec4) : vec4

Returns the base 2 logarithm of x.

{
 "show" : "log2(${Density}) > 1.0"
}

11.3.9.20. fract

fract(x : Number) : Number
fract(x : vec2) : vec2
fract(x : vec3) : vec3
fract(x : vec4) : vec4

Returns the fractional part of x. Equivalent to x   —   floor(x).

{
 "color" : "color() * fract(${Density})"
}

11.3.9.21. pow

pow(base : Number, exponent : Number) : Number
pow(base : vec2, exponent : vec2) : vec2
pow(base : vec3, exponent : vec3) : vec3
pow(base : vec4, exponent : vec4) : vec4

Returns base raised to the power of exponent.

{
 "show" : "pow(${Density}, ${Temperature}) > 1.0"
}

11.3.9.22. min

min(x : Number, y : Number) : Number
min(x : vec2, y : vec2) : vec2
min(x : vec3, y : vec3) : vec3
min(x : vec4, y : vec4) : vec4

min(x : Number, y : Number) : Number
min(x : vec2, y : Number) : vec2
min(x : vec3, y : Number) : vec3
min(x : vec4, y : Number) : vec4

Returns the smaller of x and y.

{
 "show" : "min(${Width}, ${Height}) > 10.0"

OPEN GEOSPATIAL CONSORTIUM 18-053R2 136

}

11.3.9.23. max

max(x : Number, y : Number) : Number
max(x : vec2, y : vec2) : vec2
max(x : vec3, y : vec3) : vec3
max(x : vec4, y : vec4) : vec4

max(x : Number, y : Number) : Number
max(x : vec2, y : Number) : vec2
max(x : vec3, y : Number) : vec3
max(x : vec4, y : Number) : vec4

Returns the larger of x and y.

{
 "show" : "max(${Width}, ${Height}) > 10.0"
}

11.3.9.24. clamp

clamp(x : Number, min : Number, max : Number) : Number
clamp(x : vec2, min : vec2, max : vec2) : vec2
clamp(x : vec3, min : vec3, max : vec3) : vec3
clamp(x : vec4, min : vec4, max : vec4) : vec4

clamp(x : Number, min : Number, max : Number) : Number
clamp(x : vec2, min : Number, max : Number) : vec2
clamp(x : vec3, min : Number, max : Number) : vec3
clamp(x : vec4, min : Number, max : Number) : vec4

Constrains x to lie between min and max.

{
 "color" : "color() * clamp(${temperature}, 0.1, 0.2)"
}

11.3.9.25. mix

mix(x : Number, y : Number, a : Number) : Number
mix(x : vec2, y : vec2, a : vec2) : vec2
mix(x : vec3, y : vec3, a : vec3) : vec3
mix(x : vec4, y : vec4, a : vec4) : vec4

mix(x : Number, y : Number, a : Number) : Number
mix(x : vec2, y : vec2, a : Number) : vec2
mix(x : vec3, y : vec3, a : Number) : vec3
mix(x : vec4, y : vec4, a : Number) : vec4

OPEN GEOSPATIAL CONSORTIUM 18-053R2 137

Computes the linear interpolation of x and y.

{
 "show" : "mix(20.0, ${Angle}, 0.5) > 25.0"
}

11.3.9.26. length

length(x : Number) : Number
length(x : vec2) : vec2
length(x : vec3) : vec3
length(x : vec4) : vec4

Computes the length of vector x, i.e., the square root of the sum of the squared components. If x
is a number, length returns x.

{
 "show" : "length(${Dimensions}) > 10.0"
}

11.3.9.27. distance

distance(x : Number, y : Number) : Number
distance(x : vec2, y : vec2) : vec2
distance(x : vec3, y : vec3) : vec3
distance(x : vec4, y : vec4) : vec4

Computes the distance between two points x and y, i.e., length(x   —   y).

{
 "show" : "distance(${BottomRight}, ${UpperLeft}) > 50.0"
}

11.3.9.28. normalize

normalize(x : Number) : Number
normalize(x : vec2) : vec2
normalize(x : vec3) : vec3
normalize(x : vec4) : vec4

Returns a vector with length 1.0 that is parallel to x. When x is a number, normalize returns 1.
0.

{
 "show" : "normalize(${RightVector}, ${UpVector}) > 0.5"
}

11.3.9.29. dot

dot(x : Number, y : Number) : Number

OPEN GEOSPATIAL CONSORTIUM 18-053R2 138

dot(x : vec2, y : vec2) : vec2
dot(x : vec3, y : vec3) : vec3
dot(x : vec4, y : vec4) : vec4

Computes the dot product of x and y.

{
 "show" : "dot(${RightVector}, ${UpVector}) > 0.5"
}

11.3.9.30. cross

cross(x : vec3, y : vec3) : vec3

Computes the cross product of x and y. This function only accepts vec3 arguments.

{
 "color" : "vec4(cross(${RightVector}, ${UpVector}), 1.0)"
}

11.3.10. Notes

Comments are not supported.

11.4. Point Cloud

A Point Cloud is a collection of points that may be styled like other features. In addition to
evaluating a point’s color and show properties, a Point Cloud style may evaluate pointSize, or
the size of each point in pixels. The default pointSize is 1.0.

{
 “color” : “color(‘red’)”,
 “pointSize” : “${Temperature} * 0.5”
}

Implementations may clamp the evaluated pointSize to the system’s supported point size
range. For example, WebGL renderers may query ALIASED_POINT_SIZE_RANGE to get the
system limits when rendering with POINTS. A pointSize of 1.0 must be supported.

Point Cloud styles may also reference semantics from the Feature Table including position, color,
and normal to allow for more flexible styling of the source data.

• ${POSITION} is a vec3 storing the xyz Cartesian coordinates of the point before
the RTC_CENTER and tile transform are applied. When the positions are quantized,
${POSITION} refers to the position after the QUANTIZED_VOLUME_SCALE is applied, but
before QUANTIZED_VOLUME_OFFSET is applied.

• ${POSITION_ABSOLUTE} is a vec3 storing the xyz Cartesian coordinates of the point
after the RTC_CENTER and tile transform are applied. When the positions are quantized,

OPEN GEOSPATIAL CONSORTIUM 18-053R2 139

${POSITION_ABSOLUTE} refers to the position after the QUANTIZED_VOLUME_SCALE,
QUANTIZED_VOLUME_OFFSET, and tile transform are applied.

• ${COLOR} evaluates to a Color storing the rgba color of the point. When the Feature
Table’s color semantic is RGB or RGB565, ${COLOR}.alpha is 1.0. If no color semantic is
defined, ${COLOR} evaluates to the application-specific default color.

• ${NORMAL} is a vec3 storing the normal, in Cartesian coordinates, of the point before the
tile transform is applied. When normals are oct-encoded, ${NORMAL} refers to the decoded
normal. If no normal semantic is defined in the Feature Table, ${NORMAL} evaluates to
undefined.

For example:

{
 “color” : “${COLOR} * color(‘red’)'”,
 “show” : “${POSITION}.x > 0.5”,
 “pointSize” : “${NORMAL}.x > 0 ? 2 : 1”
}

Implementation Note: Point cloud styling engines may often use a shader (GLSL)
implementation, however some features of the expression language are not possible in pure a
GLSL implementation. Some of these features include:

• Evaluation of isNan and isFinite (GLSL 2.0+ supports isnan and isinf for these
functions respectively)

• The types null and undefined

• Strings, including accessing object properties (color()['r']) and batch table values

• Regular expressions

• Arrays of lengths other than 2, 3, or 4

• Mismatched type comparisons (e.g. 1.0 === false)

• Array index out of bounds

11.5. File extension and MIME type

Tileset styles use the .json extension and the application/json mime type.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 140

11.6. Property reference

11.6.1. style

A 3D Tiles style.

Properties

TYPE DESCRIPTION REQUIRED

defines object

A dictionary object of expression strings mapped to a variable
name key that may be referenced throughout the style. If an
expression references a defined variable, it is replaced with
the evaluated result of the corresponding expression.

No

show
boolean,
string,
object

A boolean expression or conditions property which
determines if a feature should be shown.

No, default: true

color
string,
object

A color expression or conditions property which determines
the color blended with the feature’s intrinsic color.

No, default:
 color('#FFFFFF')

meta object
A meta object which determines the values of non-visual
properties of the feature.

No

Additional properties are not allowed.

11.6.1.1. style.defines

A dictionary object of expression strings mapped to a variable name key that may be referenced
throughout the style. If an expression references a defined variable, it is replaced with the
evaluated result of the corresponding expression.

• Type: object

• Required: No

• Type of each property: string

11.6.1.2. style.show

A boolean expression or conditions property which determines if a feature should be shown.

• Type: boolean, string, object

OPEN GEOSPATIAL CONSORTIUM 18-053R2 141

• Required: No, default: true

11.6.1.3. style.color

A color expression or conditions property which determines the color blended with the feature’s
intrinsic color.

• Type: string, object

• Required: No, default: color('#FFFFFF')

11.6.1.4. style.meta

A meta object which determines the values of non-visual properties of the feature.

• Type: object

• Required: No

• Type of each property: string

11.6.2. boolean expression

A boolean or string with a 3D Tiles style expression that evaluates to a boolean. See
Expressions.

11.6.3. color expression

3D Tiles style expression that evaluates to a Color. See Expressions.

11.6.4. conditions

A series of conditions evaluated in order, like a series of if…else statements that result in an
expression being evaluated.

Properties

Type Description Required

conditions array[]
A series of boolean conditions evaluated in order. For the first one that evaluates
to true, its value, the ‘result’ (which is also an expression), is evaluated and
returned. Result expressions must all be the same type. If no condition evaluates

No

OPEN GEOSPATIAL CONSORTIUM 18-053R2 142

to true, the result is undefined. When conditions is undefined, null, or an
empty object, the result is undefined.

Additional properties are not allowed.

11.6.4.1. conditions.conditions

A series of boolean conditions evaluated in order. For the first one that evaluates to true, its
value, the ‘result’ (which is also an expression), is evaluated and returned. Result expressions
must all be the same type. If no condition evaluates to true, the result is undefined. When
conditions is undefined, null, or an empty object, the result is undefined.

• Type: array[]

• Required: No

11.6.5. condition

An expression evaluated as the result of a condition being true. An array of two expressions. If
the first expression is evaluated and the result is true, then the second expression is evaluated
and returned as the result of the condition.

11.6.6. expression

A valid 3D Tiles style expression. See Expressions

11.6.7. meta

A series of property names and the expression to evaluate for the value of that property.

Additional properties are allowed.

• Type of each property: expression

11.6.8. number expression

3D Tiles style expression that evaluates to a number. See Expressions.

11.6.9. Point Cloud Style

A 3D Tiles style with additional properties for Point Clouds.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 143

Properties

TYPE DESCRIPTION REQUIRED

defines object

A dictionary object of expression strings mapped to a
variable name key that may be referenced throughout the
style. If an expression references a defined variable, it is
replaced with the evaluated result of the corresponding
expression.

No

show
boolean,
string,
object

A boolean expression or conditions property which
determines if a feature should be shown.

No, default: true

color
string,
object

A color expression or conditions property which determines
the color blended with the feature’s intrinsic color.

No, default:
 color('#FFFFFF')

meta object
A meta object which determines the values of non-visual
properties of the feature.

No

point
Size

number,
string,
object

A number expression or conditions property which
determines the size of the points in pixels.

No, default: 1

Additional properties are not allowed.

11.6.9.1. PointCloudStyle.defines

A dictionary object of expression strings mapped to a variable name key that may be referenced
throughout the style. If an expression references a defined variable, it is replaced with the
evaluated result of the corresponding expression.

• Type: object

• Required: No

• Type of each property: string

11.6.9.2. PointCloudStyle.show

A boolean expression or conditions property which determines if a feature should be shown.

• Type: boolean, string, object

• Required: No, default: true

OPEN GEOSPATIAL CONSORTIUM 18-053R2 144

11.6.9.3. PointCloudStyle.color

A color expression or conditions property which determines the color blended with the feature’s
intrinsic color.

• Type: string, object

• Required: No, default: color('#FFFFFF')

11.6.9.4. PointCloudStyle.meta

A meta object which determines the values of non-visual properties of the feature.

• Type: object

• Required: No

• Type of each property: string

11.6.9.5. PointCloudStyle.pointSize

A number expression or conditions property which determines the size of the points in pixels.

• Type: number, string, object

• Required: No, default: 1

OPEN GEOSPATIAL CONSORTIUM 18-053R2 145

A

ANNEX A (NORMATIVE)
CONFORMANCE CLASS
ABSTRACT TEST SUITE

OPEN GEOSPATIAL CONSORTIUM 18-053R2 146

A ANNEX A
(NORMATIVE)
CONFORMANCE CLASS ABSTRACT TEST
SUITE

An Abstract Test Suite is not required for a Community Standard

OPEN GEOSPATIAL CONSORTIUM 18-053R2 147

B

ANNEX B (INFORMATIVE)
CONTRIBUTOR
ACKNOWLEDGEMENTS

OPEN GEOSPATIAL CONSORTIUM 18-053R2 148

B ANNEX B
(INFORMATIVE)
CONTRIBUTOR ACKNOWLEDGEMENTS

Matt Amato
Erik Andersson
Dan Bagnell
Ray Bentley
Jannes Bolling
Dylan Brown
Sarah Chow
Paul Connelly
Volker Coors
Tom Fili
Leesa Fini
Ralf Gutbell
Frederic Houbie
Christopher Mitchell, Ph.D.
Claus Nagel
Jean-Philippe Pons
Carl Reed
Kevin Ring
Scott Simmons
Stan Tillman
Piero Toffanin
Pano Voudouris
Dave Wesloh

OPEN GEOSPATIAL CONSORTIUM 18-053R2 149

C

ANNEX C (INFORMATIVE)
REVISION HISTORY

OPEN GEOSPATIAL CONSORTIUM 18-053R2 150

C ANNEX C
(INFORMATIVE)
REVISION HISTORY

DATE RELEASEAUTHORDESCRIPTION

2018-
06-04 1.0 Gabby

Getz Put 3D Tiles specification document into OGC document template

2018-
08-03 1.0r1 Gabby

Getz Respond to public comments

2018-
11-16 1.0r2 Gabby

Getz

• Updated conformance section to include schema references
• Update preface to address updates to WKT for CRS (OGC12-

053r5)
• Revise Introduction section to clarify conceptual concepts,

including tile, tile content, tile formats, features, properties,
styles, and the Batch Table and Features Table and how glTF is
used in 3D Tiles

• Updated “tile” and “HLOD” definitions, added “tile content”,
“tile format”, “geometric error”, “screen space error”, and “spatial
coherence” definitions

• Add reference to EPSG in CRS section
• Remove glTF transforms from CRS section. Add only to relevant

sections after being introduced.
• Remove references to “generation tool”
• Fix phrasing describing Tileset JSON
• Revise Tile Formats intro
• Revise embedded glTF wording.
• Fix “required” property errors in the properties reference as

generated from the schema
• Remove 3d_tileset_time 3D Tiles Style variable
• Add clarification for styling tilesets without features
• Update normative references to include:

• EPSG 4979
• IETF RFC3986
• IETF RFC2397
• UTF-8
• W3C CSS3 Color

• Change glTF specification from non-normative to normative
reference

OPEN GEOSPATIAL CONSORTIUM 18-053R2 151

DATE RELEASEAUTHORDESCRIPTION

2019-
01-21 TODO TODO

• Revise internal link formatting
• TODO

OPEN GEOSPATIAL CONSORTIUM 18-053R2 152

3

NORMATIVE REFERENCES

OPEN GEOSPATIAL CONSORTIUM 18-053R2 153

3 NORMATIVE REFERENCES

The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition cited
applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

3.1. Normative

EPSG: 4979, 2007. http://spatialreference.org/ref/epsg/wgs-84-3/

L. Masinter: IETF RFC 2397, The “data” URL scheme. (1998). https://www.rfc-editor.org/info/
rfc2397.

F. Yergeau: IETF RFC 3629, UTF-8, a transformation format of ISO 10646. (2003). https://
www.rfc-editor.org/info/rfc3629.

T. Berners-Lee, R. Fielding, L. Masinter: IETF RFC 3986, Uniform Resource Identifier (URI): Generic
Syntax. (2005). https://www.rfc-editor.org/info/rfc3986.

Khronos Group: glTF 2.0 — Runtime 3D Asset Delivery, 2017. https://github.com/
KhronosGroup/glTF/blob/master/README.md

Roger Lott: OGC 12-063r5, Geographic information — Well known text representation of coordinate
reference systems. Open Geospatial Consortium (2015). https://docs.ogc.org/
is/12-063r5/12-063r5.html.

W3C css-color-3, CSS Color Module Level 3. https://www.w3.org/TR/css-color-3/.

OPEN GEOSPATIAL CONSORTIUM 18-053R2 154

http://spatialreference.org/ref/epsg/wgs-84-3/
https://www.rfc-editor.org/info/rfc2397
https://www.rfc-editor.org/info/rfc2397
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3986
https://github.com/KhronosGroup/glTF/blob/master/README.md
https://github.com/KhronosGroup/glTF/blob/master/README.md
https://docs.ogc.org/is/12-063r5/12-063r5.html
https://docs.ogc.org/is/12-063r5/12-063r5.html
https://www.w3.org/TR/css-color-3/

	I. Preface
	II. Security considerations
	III. Source of the content for this OGC document
	IV. Validity of content
	V. Future work
	1. Scope
	2. Conformance
	3. Normative references
	3.1. Normative

	4. Terms and definitions
	5. Conventions
	6. 3D Tiles Specification
	6.1. Overview
	6.2. File extensions and MIME types
	6.3. JSON encoding
	6.4. URIs
	6.5. Units
	6.6. Coordinate reference system (CRS)
	6.7. Tiles
	6.7.1. Geometric error
	6.7.2. Refinement
	6.7.2.1. Replacement
	6.7.2.2. Additive

	6.7.3. Bounding volumes
	6.7.3.1. Region
	6.7.3.2. Box
	6.7.3.3. Sphere

	6.7.4. Viewer request volume
	6.7.5. Transforms
	6.7.5.1. Tile transforms
	6.7.5.2. glTF transforms
	6.7.5.2.1. glTF node hierarchy
	6.7.5.2.2. y-up to z-up
	6.7.5.2.3. Example
	6.7.5.2.4. Implementation example

	6.7.6. Tile JSON

	6.8. Tileset JSON
	6.8.1. External tilesets
	6.8.2. Bounding volume spatial coherence
	6.8.3. Spatial data structures
	6.8.3.1. Quadtrees
	6.8.3.2. K-d trees
	6.8.3.3. Octrees
	6.8.3.4. Grids

	6.9. Specifying extensions and application specific extras
	6.9.1. Extensions
	6.9.2. Extras

	6.10. Tile format specifications

	7. Property reference
	7.1. Tileset
	7.1.1. Tileset.asset
	7.1.2. Tileset.properties
	7.1.3. Tileset.geometricError
	7.1.4. Tileset.root
	7.1.5. Tileset.extensionsUsed
	7.1.6. Tileset.extensionsRequired
	7.1.7. Tileset.extensions
	7.1.8. Tileset.extras

	7.2. Asset
	7.2.1. Asset.version
	7.2.2. Asset.tilesetVersion
	7.2.3. Asset.extensions
	7.2.4. Asset.extras

	7.3. Bounding Volume
	7.3.1. BoundingVolume.box
	7.3.2. BoundingVolume.region
	7.3.3. BoundingVolume.sphere
	7.3.4. BoundingVolume.extensions
	7.3.5. BoundingVolume.extras

	7.4. Extension
	7.5. Extras
	7.6. Properties
	7.6.1. Properties.maximum
	7.6.2. Properties.minimum
	7.6.3. Properties.extensions
	7.6.4. Properties.extras

	7.7. Tile
	7.7.1. Tile.boundingVolume
	7.7.2. Tile.viewerRequestVolume
	7.7.3. Tile.geometricError
	7.7.4. Tile.refine
	7.7.5. Tile.transform
	7.7.6. Tile.content
	7.7.7. Tile.children
	7.7.8. Tile.extensions
	7.7.9. Tile.extras

	7.8. Tile Content
	7.8.1. TileContent.boundingVolume
	7.8.2. TileContent.uri
	7.8.3. TileContent.extensions
	7.8.4. TileContent.extras

	8. Feature Table
	8.1. Overview
	8.2. Layout
	8.2.1. Padding
	8.2.2. JSON header
	8.2.3. Binary body

	8.3. Implementation example
	8.4. Property reference
	8.4.1. Feature Table
	8.4.1.1. FeatureTable.extensions
	8.4.1.2. FeatureTable.extras

	8.4.2. BinaryBodyReference
	8.4.2.1. BinaryBodyReference.byteOffset

	8.4.3. Property

	9. Batch Table
	9.1. Overview
	9.2. Layout
	9.2.1. Padding
	9.2.2. JSON header
	9.2.3. Binary body

	9.3. Implementation example
	9.4. Property reference
	9.4.1. Batch Table
	9.4.1.1. BatchTable.extensions
	9.4.1.2. BatchTable.extras

	9.4.2. BinaryBodyReference
	9.4.2.1. BinaryBodyReference.byteOffset
	9.4.2.2. BinaryBodyReference.componentType
	9.4.2.3. BinaryBodyReference.type

	9.4.3. Property

	10. Tile format specifications
	10.1. Batched 3D Model
	10.1.1. Overview
	10.1.2. Layout
	10.1.2.1. Padding

	10.1.3. Header
	10.1.4. Feature Table
	10.1.4.1. Semantics
	10.1.4.1.1. Feature semantics
	10.1.4.1.2. Global semantics

	10.1.5. Batch Table
	10.1.6. Binary glTF
	10.1.6.1. Coordinate system

	10.1.7. File extension and MIME type
	10.1.8. Implementation example
	10.1.8.1. Property reference
	10.1.8.1.1. Batched 3D Model Feature Table
	10.1.8.1.1.1. Batched3DModelFeatureTable.extensions
	10.1.8.1.1.2. Batched3DModelFeatureTable.extras
	10.1.8.1.1.3. Batched3DModelFeatureTable.BATCH_LENGTH
	10.1.8.1.1.4. Batched3DModelFeatureTable.RTC_CENTER

	10.1.8.1.2. BinaryBodyReference
	10.1.8.1.2.1. BinaryBodyReference.byteOffset

	10.1.8.1.3. GlobalPropertyCartesian3
	10.1.8.1.4. GlobalPropertyScalar
	10.1.8.1.5. Property

	10.2. Instanced 3D Model
	10.2.1. Overview
	10.2.2. Layout
	10.2.2.1. Padding

	10.2.3. Header
	10.2.4. Feature Table
	10.2.4.1. Semantics
	10.2.4.1.1. Instance semantics
	10.2.4.1.2. Global semantics

	10.2.4.2. Instance orientation
	10.2.4.2.1. Oct-encoded normal vectors
	10.2.4.2.2. Default orientation

	10.2.4.3. Instance position
	10.2.4.3.1. RTC_CENTER
	10.2.4.3.2. Quantized positions

	10.2.4.4. Instance scaling
	10.2.4.5. Examples
	10.2.4.5.1. Positions only
	10.2.4.5.2. Quantized positions and oct-encoded normals

	10.2.5. Batch Table
	10.2.6. glTF
	10.2.6.1. Coordinate system

	10.2.7. File extension and MIME type
	10.2.8. Property reference
	10.2.8.1. Instanced 3D Model Feature Table
	10.2.8.1.1. Instanced3DModelFeatureTable.extensions
	10.2.8.1.2. Instanced3DModelFeatureTable.extras
	10.2.8.1.3. Instanced3DModelFeatureTable.POSITION
	10.2.8.1.4. Instanced3DModelFeatureTable.POSITION_QUANTIZED
	10.2.8.1.5. Instanced3DModelFeatureTable.NORMAL_UP
	10.2.8.1.6. Instanced3DModelFeatureTable.NORMAL_RIGHT
	10.2.8.1.7. Instanced3DModelFeatureTable.NORMAL_UP_OCT32P
	10.2.8.1.8. Instanced3DModelFeatureTable.NORMAL_RIGHT_OCT32P
	10.2.8.1.9. Instanced3DModelFeatureTable.SCALE
	10.2.8.1.10. Instanced3DModelFeatureTable.SCALE_NON_UNIFORM
	10.2.8.1.11. Instanced3DModelFeatureTable.BATCH_ID
	10.2.8.1.12. Instanced3DModelFeatureTable.INSTANCES_LENGTH
	10.2.8.1.13. Instanced3DModelFeatureTable.QUANTIZED_VOLUME_OFFSET
	10.2.8.1.14. Instanced3DModelFeatureTable.QUANTIZED_VOLUME_SCALE

	10.2.8.2. BinaryBodyReference
	10.2.8.2.1. BinaryBodyReference.byteOffset

	10.2.8.3. GlobalPropertyCartesian3
	10.2.8.4. GlobalPropertyScalar
	10.2.8.5. Property

	10.3. Point Cloud
	10.3.1. Overview
	10.3.2. Layout
	10.3.2.1. Padding

	10.3.3. Header
	10.3.4. Feature Table
	10.3.4.1. Semantics
	10.3.4.1.1. Point semantics
	10.3.4.1.2. Global semantics

	10.3.4.2. Point positions
	10.3.4.2.1. Coordinate reference system (CRS)
	10.3.4.2.2. RTC_CENTER
	10.3.4.2.3. Quantized positions

	10.3.4.3. Point colors
	10.3.4.4. Point normals
	10.3.4.4.1. Oct-encoded normal vectors

	10.3.4.5. Batched points
	10.3.4.6. Examples
	10.3.4.6.1. Positions only
	10.3.4.6.2. Positions and colors
	10.3.4.6.3. Quantized positions and oct-encoded normals
	10.3.4.6.4. Batched points
	10.3.4.6.5. Per-point properties

	10.3.5. Batch Table
	10.3.6. File extension and MIME type
	10.3.7. Implementation example
	10.3.8. Property reference
	10.3.8.1. Point Cloud Feature Table
	10.3.8.1.1. PointCloudFeatureTable.extensions
	10.3.8.1.2. PointCloudFeatureTable.extras
	10.3.8.1.3. PointCloudFeatureTable.POSITION
	10.3.8.1.4. PointCloudFeatureTable.POSITION_QUANTIZED
	10.3.8.1.5. PointCloudFeatureTable.RGBA
	10.3.8.1.6. PointCloudFeatureTable.RGB
	10.3.8.1.7. PointCloudFeatureTable.RGB565
	10.3.8.1.8. PointCloudFeatureTable.NORMAL
	10.3.8.1.9. PointCloudFeatureTable.NORMAL_OCT16P
	10.3.8.1.10. PointCloudFeatureTable.BATCH_ID
	10.3.8.1.11. PointCloudFeatureTable.POINTS_LENGTH
	10.3.8.1.12. PointCloudFeatureTable.RTC_CENTER
	10.3.8.1.13. PointCloudFeatureTable.QUANTIZED_VOLUME_OFFSET
	10.3.8.1.14. PointCloudFeatureTable.QUANTIZED_VOLUME_SCALE
	10.3.8.1.15. PointCloudFeatureTable.CONSTANT_RGBA
	10.3.8.1.16. PointCloudFeatureTable.BATCH_LENGTH

	10.3.8.2. BinaryBodyReference
	10.3.8.2.1. BinaryBodyReference.byteOffset

	10.3.8.3. GlobalPropertyCartesian3
	10.3.8.4. GlobalPropertyCartesian4
	10.3.8.5. GlobalPropertyScalar
	10.3.8.6. Property

	10.4. Composite
	10.4.1. Overview
	10.4.2. Layout
	10.4.2.1. Padding

	10.4.3. Header
	10.4.4. Inner tiles
	10.4.5. File extension and MIME type
	10.4.6. Implementation examples

	11. Declarative styling specification
	11.1. Overview
	11.2. Concepts
	11.2.1. Styling features
	11.2.2. Conditions
	11.2.3. Defining variables
	11.2.4. Meta property

	11.3. Expressions
	11.3.1. Semantics
	11.3.2. Operators
	11.3.3. Types
	11.3.3.1. Number
	11.3.3.2. Vector
	11.3.3.2.1. vec2
	11.3.3.2.2. vec3
	11.3.3.2.3. vec4
	11.3.3.2.4. Vector usage

	11.3.3.3. Color
	11.3.3.4. RegExp

	11.3.4. Operator rules
	11.3.5. Type conversions
	11.3.6. String conversions
	11.3.7. Constants
	11.3.7.1. PI
	11.3.7.2. E

	11.3.8. Variables
	11.3.9. Built-in functions
	11.3.9.1. abs
	11.3.9.2. sqrt
	11.3.9.3. cos
	11.3.9.4. sin
	11.3.9.5. tan
	11.3.9.6. acos
	11.3.9.7. asin
	11.3.9.8. atan
	11.3.9.9. atan2
	11.3.9.10. radians
	11.3.9.11. degrees
	11.3.9.12. sign
	11.3.9.13. floor
	11.3.9.14. ceil
	11.3.9.15. round
	11.3.9.16. exp
	11.3.9.17. log
	11.3.9.18. exp2
	11.3.9.19. log2
	11.3.9.20. fract
	11.3.9.21. pow
	11.3.9.22. min
	11.3.9.23. max
	11.3.9.24. clamp
	11.3.9.25. mix
	11.3.9.26. length
	11.3.9.27. distance
	11.3.9.28. normalize
	11.3.9.29. dot
	11.3.9.30. cross

	11.3.10. Notes

	11.4. Point Cloud
	11.5. File extension and MIME type
	11.6. Property reference
	11.6.1. style
	11.6.1.1. style.defines
	11.6.1.2. style.show
	11.6.1.3. style.color
	11.6.1.4. style.meta

	11.6.2. boolean expression
	11.6.3. color expression
	11.6.4. conditions
	11.6.4.1. conditions.conditions

	11.6.5. condition
	11.6.6. expression
	11.6.7. meta
	11.6.8. number expression
	11.6.9. Point Cloud Style
	11.6.9.1. PointCloudStyle.defines
	11.6.9.2. PointCloudStyle.show
	11.6.9.3. PointCloudStyle.color
	11.6.9.4. PointCloudStyle.meta
	11.6.9.5. PointCloudStyle.pointSize

	Annex A (normative) Conformance Class Abstract Test Suite
	Annex B (informative) Contributor Acknowledgements
	Annex C (informative) Revision History

