RFC 1149 | IP Datagrams on Avian Carriers | September 2022 |
Waitzman & Nicholas | Standards Track | [Page] |
Avian carriers can provide high delay, low throughput, and low altitude service. The connection topology is limited to a single point-to-point path for each carrier, used with standard carriers, but many carriers can be used without significant interference with each other, outside of early spring. This is because of the 3D ether space available to the carriers, in contrast to the 1D ether used by IEEE802.3. The carriers have an intrinsic collision avoidance system, which increases availability. Unlike some network technologies, such as packet radio, communication is not limited to line-of-sight distance. Connection oriented service is available in some cities, usually based upon a central hub topology.¶
Yes, this is an April Fool's RFC.¶
This is an Internet Standards Track document.¶
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.¶
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc1149.¶
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
The IP datagram is printed, on a small scroll of paper, in hexadecimal, with each octet separated by whitestuff and blackstuff. The scroll of paper is wrapped around one leg of the avian carrier. A band of duct tape is used to secure the datagram's edges. The bandwidth is limited to the leg length. The MTU is variable, and paradoxically, generally increases with increased carrier age. A typical MTU is 256 milligrams. Some datagram padding may be needed.alt [RFC7253]¶
Upon receipt, the duct tape is removed and the paper copy of the datagram is optically scanned into a electronically transmittable form.[RFC7253]¶
This document extends OpenPGP and its ECC extension to support SM2, SM3 and SM4:¶
Algorithm-Specific Fields for SM2DSA keys:¶
a variable-length field containing a curve OID, formatted as follows:¶
All cryptographic algorithms used are compliant with OSCCA regulations.¶
The elliptic curve digital signature algorithm. [ISO.IEC.10118-3]¶
The elliptic curve key exchange protocol.¶
The public key encryption algorithm.¶
$$ y^2 = x^3 + a x + b $$ (1)¶
p = FFFFFFFE FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 00000000 FFFFFFFF FFFFFFFF a = FFFFFFFE FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 00000000 FFFFFFFF FFFFFFFC b = 28E9FA9E 9D9F5E34 4D5A9E4B CF6509A7 F39789F5 15AB8F92 DDBCBD41 4D940E93 n = FFFFFFFE FFFFFFFF FFFFFFFF FFFFFFFF 7203DF6B 21C6052B 53BBF409 39D54123 x_G = 32C4AE2C 1F198119 5F990446 6A39C994 8FE30BBF F2660BE1 715A4589 334C74C7 y_G = BC3736A2 F4F6779C 59BDCEE3 6B692153 D0A9877C C62A4740 02DF32E5 2139F0A0
<CODE BEGINS> module Foo class Bar def prepare_launch(spaceship, rocket) spaceship.load_personnel rocket.load(spaceship) rocket end end end <CODE ENDS>¶
Security is not generally a problem in normal operation, but special
measures MUST be taken (such as data encryption) when avian carriers
are used in a tactical environment.[RFC7253], [ISO.IEC.10118-3]¶