In Force

BIPM Mise en Pratique

BIPM PLTS-2000 : 2012
Estimates of the Differences between Thermodynamic Temperature and the ITS-90
CCT
.
BIPM Mise en Pratique

In Force




Abstract

At the CCT’s request, Working Group 4 (WG4) critically reviewed all available measurements of T T 90 including constant-volume gas thermometry, acoustic gas thermometry, spectral radiation thermometry, total radiation thermometry, noise thermometry, and dielectric-constant gas thermometry. Consensus estimates are provided for T T 90 , for selected measurements from 4.2K to 1 358K , as well as a recommendation for analytic approximations to T T 90 for the range 0.65K to 1 358K .

Estimates of the Differences between Thermodynamic Temperature and the ITS-90

1.  Table of Differences

Table 1 summarizes the best estimates of T T 90 above 4.2K as of 2010. In general, a weighted average was formed using the uncertainties identified by WG4. For details see [1]. The data are shown in Figure 1 and Figure 2.

Table 1.  Estimates of T T 90 between 4.2K and 1 358K . The transitions of the defining fixed pointsand secondary reference points of the ITS-90 are marked in the 2nd and 6th columns. All uncertainties are standard uncertainties ( k = 1 ). The differences for temperatures above 1 358K are under investigation by Working Group 5. The results presented here may be extrapolated above 1 358K using Planck’s law.

T 90
(K )

T T 90
(mK )

u
(mK )

T 90
(K )

T T 90
(mK )

u
(mK )

4.2 0.02 0.12 161.405 Xe 8.43 1.8
5 0.10 0.12 195 6.97 1.8
6 0.04 0.13 234.315 6 Hg 3.25 1.0
7 0.08 0.09 255 1.64 0.9
8 0.01 0.10 273.16 TPW 0 0
9.288 Nb 0.13 0.11 290 2.19 0.4
11 0.27 0.12 302.914 6 Ga 4.38 0.4
13.803 3 e-H2 0.44 0.14 335 7.62 0.5
17.035 e-H2 0.51 0.16 373.124 H2O 9.74 0.6
20.27 e-H2 0.32 0.17 429.748 5 In 10.1 0.8
22.5 0.10 0.18 505.078 Sn 11.5 1.3
24.556 1 Ne 0.23 0.20 600.612 Pb 9.21 6.1
35 0.53 1.0 692.677 Zn 13.8 6.9
45 0.75 1.4 800 22.4 6.4
54.358 4 O2 1.06 1.6 903.778 Sb 27.6 7.6
70 1.57 1.9 933.473 Al 28.7 6.6
77.657 3.80 1.2 1 052.78 Cu/Ag 40.9 26
83.805 8 Ar 4.38 1.3 1 150 46.3 20
90 5.30 1.1 1 234.93 Ag 46.2 14
100 6.19 1.2 1 337.33 Au 39.9 20
130 8.07 1.6 1 357.77 Cu 52.1 20

2.  Interpolation Functions

If it is not convenient to use Table 1, the differences T T 90 may be approximated by the following expressions. Above 70K , the relative differences of the interpolation functions (with respect to the values of Table 1) are less than 15 %, except at 600K and the gold point.

From 0.65K to 2K , use the polynomial for the temperature scale PTB-2006 (based on the 3Helium vapor-pressure) [2] with

T T 90 T 2 006 T 90 .

Below 1K , T 2 006 is identical to T PLTS- 2 000 .

From 2K to 8K ,

T T 90 0 .

From 8K to 273.16K ,

TT90/mK =i=0..7bi×log10T90/273.16K i+1  (1)

with the coefficients:

b 0 = 4.424 57 × 10 1   b 1 = 1.763 11 × 10 2   b 2 = 1.539 85 × 10 3   b 3 = 3.636 85 × 10 3

b 4 = 4.198 98 × 10 3   b 5 = 2.613 19 × 10 3   b 6 = 8.419 22 × 10 2   b 7 = 1.103 22 × 10 2

The derivative d T T 90 / d T 90 at the triple point of water is 7.0 × 10 5 .

From 273.16K to 1 357.77K (copper point):

TT90/mK =T90/K i=0..4ci×273.16K /T902i  (2)

with the coefficients:

c 0 = 0.049 7   c 1 = 0.303 2   c 2 = 1.025 4   c 3 = 1.289 5   c 4 = 0.517 6

The derivative at the triple point of water is 10.1 × 10 5 , resulting in a discontinuity of 3.1 × 10 5 between Equation (1) and Equation (2), see Figure 1. This is consistent with the values from recent thermodynamic measurements and measurements of platinum resistance thermometers that conform to ITS-90.

Figure 1 — Overview of consensus estimates for T T 90 with emphasis on the range above the triple point of water. The smooth functions (Equation (1) and Equation (2), black line) are interpolating the mean values (black dots). Error bars represent uncertainties with k = 1 .

Figure 2 — Enlargement of the range between 4.2K and 80K of consensus estimates for T T 90 . The smooth function (Equation (1), black line) interpolates the mean values (black dots) above 8K . Error bars represent uncertainties with k = 1 .


References

[1]  ] J. Fischer, M. de Podesta, K. D. Hill, M. Moldover, L. Pitre, R. Rusby, P. Steur, O. Tamura, R. White, L.Wolber, Int. J. Thermophys. 32, 12-25 (2011).

[2]  ] J. Engert, B. Fellmuth, K. Jousten, Metrologia 44, 40-52 (2007).